Les auteurs présentent de nouvelles méthodes de pondération pour la combinaison de prévisions de variables discrètes issues de différents modèles de Markov à changement de régime. Plus particulièrement, ils étendent deux classes existantes de méthodes de combinaison – combinaison de prévisions établies au moyen de modèles bayésiens (statiques) et combinaison dynamique de prévisions – de manière à correspondre explicitement à l’objectif assigné à l’exercice de prévision d’une variable discrète.