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Abstract 
Recent rises in macroeconomic volatility have prompted the introduction of quantile vector 
autoregression (QVAR) models to forecast macroeconomic risk. This paper provides an 
extensive evaluation of the predictive performance of QVAR models in a pseudo-out-of-
sample experiment spanning 112 monthly US variables over 40 years, with horizons of 1 to 12 
months. We compare QVAR with three parametric benchmarks: a Gaussian VAR, a 
generalized autoregressive conditional heteroskedasticity VAR and a VAR with stochastic 
volatility. QVAR frequently, significantly and quantitatively improves upon the benchmarks 
and almost never performs significantly worse. Forecasting improvements are concentrated in 
the labour market and interest and exchange rates. Augmenting the QVAR model with factors 
estimated by principal components or quantile factors significantly enhances macroeconomic 
risk forecasting in some cases, mostly in the labour market. Generally, QVAR and the 
augmented models perform equally well. We conclude that both are adequate tools for 
modeling macroeconomic risks.  

Topics: Econometrics and statistical methods; Business fluctuations and cycles 
JEL codes: C53, E37, C55 

Résumé 
Les récentes hausses de la volatilité macroéconomique ont suscité l’adoption de modèles 
vectoriels autorégressifs quantiles (QVAR) pour prévoir les risques macroéconomiques. Cette 
étude présente une évaluation approfondie de la qualité des prévisions découlant d’un 
modèle QVAR dans une expérience en pseudo hors échantillon couvrant 112 variables 
mensuelles américaines recueillies sur 40 ans, avec des horizons de 1 à 12 mois. Nous 
comparons ce modèle avec trois modèles paramétriques de référence : un modèle vectoriel 
autorégressif (VAR) gaussien, un modèle VAR à hétéroscédasticité conditionnelle 
autorégressive généralisée et un modèle VAR à volatilité stochastique. Nous constatons que 
les résultats du modèle QVAR sont fréquemment, significativement et quantitativement 
supérieurs à ceux des modèles de référence et ne leur sont presque jamais significativement 
inférieurs. L’amélioration se constate particulièrement dans les prévisions relatives au marché 
du travail, aux taux d’intérêt et aux taux de change. L’ajout de facteurs estimés par des 
composantes principales ou des facteurs quantiles au modèle QVAR améliore 
considérablement la prévision des risques macroéconomiques dans certains cas, 
principalement en ce qui concerne le marché du travail. En général, le modèle QVAR et ses 
versions enrichies fonctionnent tout aussi bien, et nous concluons qu’ils constituent tous des 
outils adéquats pour modéliser les risques macroéconomiques. 

Sujets : Méthodes économétriques et statistiques; Cycles et fluctuations économiques 
Codes JEL : C53, E37, C55 



1. Introduction

The rise in macroeconomic volatility experienced during the 2007 financial crisis and 
the COVID-19 pandemic ended the Great Moderation and increased interest in modeling 
macroeconomic risk. Work by Giglio, Kelly, and Pruitt (2016) and Adrian, Boyarchenko, 
and Giannone (2019) popularized the use of quantile regressions in this context, finding 
evidence that financial stress leads to asymmetry in output growth. Many studies ap-
plied those methods in a single equation framework, focusing on the predictive power 
of financial indicators for risk to output growth (e.g., Figueres and Jarociński (2020), 
Adams et al. (2021) and Iseringhausen (2024)) and inflation (e.g., Manzan and Zerom 
(2013), Manzan (2015) and López-Salido and Loria (2020)). Others have proposed using 
quantile regressions as part of a structural analysis studying the effects of shocks on 
the conditional distribution of output growth (Loria, Matthes, and Zhang (2024)) or 
to distinguish between shocks to upside, downside and total uncertainty (Forni, Gam-
betti, and Sala (2024)). Against this background, several researchers (White, Kim, and 
Manganelli (2015), Chavleishvili and Manganelli (2021), Chavleishvili et al. (2021) and 
Ruzicka (2021)) have recently proposed a quantile VAR (QVAR) model for forecasting, 
scenario analysis, macroprudential risk management and quantile impulse responses. 
However, the forecasting performance of the QVAR model has yet to be assessed.

The use of linear quantile regression models is primarily motivated by their robust-
ness as approximations to conditional quantiles and distributions. Economic theory can 
justify a wide variety of VAR processes for modeling conditional distributions,1 but all of 
them require committing to a particular functional form. Linear quantile regressions 
provide a weighted least square optimal linear approximation to the true conditional 
quantiles (Angrist, Chernozhukov, and Fernández-Val (2006)). As a result they have been 
employed to produce forecasts or insights regarding macroeconomic risks in ways that 
are hopefully robust to the unknown form of the underlying data-generating process.

The first contribution of this paper is to provide an extensive evaluation of the 
predictive performance of the QVAR model. Other papers have explored a similar 
comparison in a single equation setting between quantile regression models and AR-

1Occasionally binding collateral constraints (Aiyagari and Gertler (1999)) or a kinked Phillips curve 
(Benigno and Eggertsson (2023)) suggests using a threshold VAR. The model in Acemoglu and Scott 
(1997) implies a smooth transition process for output where the transition function emerges from firm 
heterogeneity as only some firms opt to invest at a given point in time. Real options arguments (Bernanke 
(1983) and McDonald and Siegel (1986)) and frictions to the supply of credit (e.g., Adrian and Boyarchenko 
(2012) and Brunnermeier and Sannikov (2014)) can motivate the use of volatility-in-means effects (e.g., 
Elder and Serletis (2010)).
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GARCH models (e.g., Brownlees and Souza (2021), Iseringhausen (2024) and Kipriyanov 
(2022)). Still others have compared quantile regression models with more sophisticated 
parametric VAR alternatives (e.g., Carriero, Clark, and Marcellino (2021) and Caldara 
et al. (2021)), but the QVAR model has yet to be compared to parametric alternatives. 
Throughout this paper, we target conditional densities with a focus on both tails of 
conditional distributions. The comparison features 112 US monthly macroeconomic 
variables and an out-of-sample period of over 40 years with forecasting horizons of 
between a month and a year. This contrasts with the typical forecasting evaluation 
in this literature that focuses on a just few targets. We supplement this comparative 
analysis with some specification tests used in the financial literature to evaluate value-
at-risk models. This allows us to evaluate the 5th and 95th quantile forecasts produced 
by the QVAR model independently of the choice of benchmark models and to inspect 
the contexts in which we can find evidence of misspecification.

The forecasting experiment is built around bivariate VAR models that pair the target 
variable with the National Financial Conditions Index (NFCI). This is perhaps the most 
interesting comparison as it is the most commonly used predictor in the growth-at-risk 
literature following Adrian, Boyarchenko, and Giannone (2019). There is also some 
evidence that credit shocks are important drivers of macroeconomic fluctuations for a 
large number of variables (Boivin, Giannoni, and Stevanović (2020)). Financial stress is 
therefore relevant to many of our target variables insofar as it captures this type of shock. 
On this basis, we compare the QVAR model with three parametric alternatives. The first 
alternative is a Gaussian VAR (VAR-N), which allows us to evaluate when and how much 
gain there is to moving beyond iid disturbances. We also include a VAR-GARCH model 
as in Normandin and Phaneuf (2004), Bouakez and Normandin (2010) or Bouakez, Chihi, 
and Normandin (2014), and a VAR-SV similar to those used by Cogley and Sargent (2005), 
Primiceri (2005) and Chan and Eisenstat (2018). This offers two common and relatively 
simple ways to introduce parametric changes in volatility. However, unlike these authors, 
we do not pursue time-varying parameters in an effort to limit our deviation from the 
iid setting to changes in volatility. Moreover, as we explain in Section 2, all four models 
(QVAR, VAR-N, VAR-GARCH and VAR-SV) impose a linear functional form on conditional 
expectations at all future horizons.

We find that the QVAR model provides statistically significant improvements in 
tail-density forecasting accuracy over the VAR-N model in close to half of all variables 
considered. Those improvements are frequently quantitatively important, with reduc-
tions in density scores on the order of 10% to 30% in many cases. These are particularly
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important for labor market variables across all horizons considered and for interest 
and exchange rates at shorter horizons. The QVAR model also offers improvements 
over VAR-GARCH and VAR-SV models, albeit in fewer cases that are concentrated in 
those same groups of variables. More importantly, the QVAR model almost never does 
statistically significantly and substantially quantitatively worse than any of the para-
metric alternatives: it is therefore a robust way to model macroeconomic risk. Those 
results surprisingly turn out to not be driven by the QVAR model doing exceptionally 
better than the parametric alternatives during NBER recessions. Finally, specification 
tests reveal evidence of misspecification. In particular, realized values that fall below 
or above the 5th and 95th quantile forecasts, respectively, tend to be serially correlated, 
whereas such “tail event” should be unpredictable under a correctly specified model.

The second contribution of this paper is to extend the analysis to a data-rich envi-
ronment by augmenting QVAR models with latent factors estimated from our set of 
112 target variables. Applications featuring principal component estimates (PCA) (e.g., 
Manzan (2015) and Goulet Coulombe et al. (2022)) and the recently introduced iterative 
quantile regression (IQR) estimates of quantile factors (Chen, Dolado, and Gonzalo 
(2021)) have been considered in the past, but all of them involve direct forecasting mod-
els in a univariate setting. In contrast, factor augmented QVAR models jointly model 
the dynamic between observed variables and latent factor estimates.

We find that QFAVAR and QVAR models tend to perform equally well at forecasting 
macroeconomic risks across all variable categories. PCA and IQR factors may carry 
information that significantly overlaps with the NFCI. However, QFAVAR models provide 
statistically significant improvements in about 13% of cases, most of them in the labor 
market across all horizons. Specification tests reveal that introducing IQR factors into 
the set of variables available to QVAR models reduces the frequency of misspecification 
and the incidence of serially correlated “tail events” This suggests the specifications 
issues reported in both cases may be due to the small set of variables we considered. 
We conclude that QVAR and QFAVAR models are appropriate tools for modeling macroe-
conomic risk.

The paper is organized as follows. Section 2 introduces the QVAR model, details 
some of its properties and explains how to use it for forecasting. Section 3 details the 
forecasting experiment, the parametric alternatives and the tests used for evaluating 
QVAR and QFAVAR models. Section 4 presents and discusses the results. Section 5 

concludes.
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2. Quantile VARModels

The QVARmodel considered in this paper has been studied for scenario analysis and
structural analysis by Chavleishvili and Manganelli (2021), Montes-Rojas (2021) and
Ruzicka (2021). For a K × 1 vector yt of time series, the conditional quantile τk ∈ [0, 1]
of the k-th variable takes the form

Q yk,t

(
τk|x̃

(k)
t

)
=
∑
i≤k

a0,k,i(τk) yi,t +
K∑
i=1

p∑
j =1

aj ,k,i(τk) yi,t–j + ϵk(τk)(1)

where x̃(k)t contains the regressors for this equation. It is well known in this literature
that quantile regressions admit a (restricted) random coefficient representation. In this
way, data can be simulated by uniformly sampling parameters over a grid of quantiles
one equation at a time, one period at a time. This leads to

yk,t =
∑
i≤k

a0,k,i(uk,t) yi,t +
K∑
i=1

p∑
j =1

aj ,k,i(uk,t) yi,t–j + ϵk(uk,t)

⇔ yt = A0(ut) yt +
p∑
j =1

Aj (ut) yt–j + ϵ(ut)(2)

where ut ∼ U[0, 1]K and A0(ut) is a lower triangular matrix with a null diagonal. Con-
temporary terms are included to ensure coefficients across equations do not depend
on multiple uk,t ’s, but are instead independent to eliminate the need for a notion of
multivariate quantiles.2 The triangular structure simplifies estimation and is applied to
all models compared in the forecasting experiment.

Before turning to estimation and forecasting, we consider a few properties of QVAR
processes. The QVARmodel in (2) admits the following SVAR representation

yt = Ā0 yt +
p∑
j =1

Āj yt–j + ϵ̄t(3)

where ϵ̄t :=
(
A0(ut) – Ā0(ut)

)
yt +

∑ p
j =1

(
Aj (ut) – Āj

)
yt–j +ϵ(ut) and Āj := E

(
Aj (ut)

)
under technical conditions spelled out in Proposition 1.5 of Ruzicka (2021). This es-

2The interested reader can also find a technical explanation in the Theorem 1 of Chavleishvili and
Manganelli (2021).
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tablishes that VAR and QVAR processes impose the same linear functional form for
conditional expectations. Moreover, when the QVAR processes admit a VAR represen-
tation, results in Lütkepohl (2005) concerning linear transformations of the form F yt
apply. In particular, if a large set of variables follow aQVAR(p) process (and thus a VAR(p)
process), then a subset of it will generally follow a VARMA( p̃,q̃) process (with possibly
some heteroskedasticity or other higher order dependence).We should therefore expect
that QVAR and VARmodels offer similar mean forecasts under fairly general conditions.

Equation (3) also shows that QVAR processes capture such things as changes in
conditional heteroskedasticity by allowing slope parameters to vary across quantiles. If
the coefficientmatrices were constant across quantiles (i.e.,Aj (ut) = Āj for j = 0, . . . , p),
then we would have a linear model with iid shocks. This observation is also the reason
why model (2) implies that the support of yt must generally be bounded. Otherwise,
quantile crossingwould occur even in large samples. It is best seen in the simpler QAR(1)
case (i.e., yt = a1(ut) yt–1 + ϵ(ut)) where variation in the slope parameters means the
conditional quantiles of yt must cross somewhere along the real line and bounding
the process makes visiting this region a zero probability event.3When this condition is
violated, the approximation the QVARmodel provides to the conditional distribution
of yt in part of its domain may be poor.4 However, as we explain below, the quantile
regression estimator we use enjoys an optimality property that should limit this process
to a small region.Howmuch each of these pointsmatter is an empirical question. Finally,
the same univariate QAR(1) process is useful to intuitively understand the technical
condition under which a QVAR process is ergodic, as well as both weakly and strongly
stationary. In this simple case, the condition is E

(
a1(ut)2

)
< 1, which allows for unit

and explosive roots for some subsets of conditional quantiles.

2.1. Estimation and Forecasting

The parameters of the QVAR process (1) can be estimated by linear quantile regression
(Koenker and Bassett (1978)) one equation at a time for a grid of quantiles. Let β(k)(τk)

be all parameters for regression k, including the intercept ϵk(τk), and x
(k)
t =

(
1, x̃(k)

′
t

)′
3See discussions in Koenker and Xiao (2006) and Hallin and Werker (2006) or Ruzicka (2021) for the

multivariate case.
4Ruzicka (2021) mentions that one could mitigate this problem by using nonlinear transformations of

regressions in quantile local projection setting, but this lies beyond the scope of the present paper.
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be the corresponding vector of regressors. Then the estimator is given by

β̂
(k)(τk) := argmin

β∈R(k+K p)

T∑
t= p+1

ρτk

(
yk,t – β

′x(k)t
)

(4)

where ρτk(u) := u(τk – I{u < τk}) is the quantile loss function. Under some technical con-
ditions that guarantee, among other things, that the process is strongly stationary and
ergodic, Ruzicka (2021) has established the asymptotic normality of this estimator.5 This
estimator further enjoys a similar property to ordinary least squares undermisspecifica-
tion as it offers the optimal linear approximation to conditional quantiles in a weighted
least square sense (Angrist, Chernozhukov, and Fernández-Val (2006)). This “robustness”
property is one of the primary motivations behind its use for macroeconomic risk
modeling.

In this paper, we produce all forecasts for QVARmodels by simulating future sample
paths from iteratively applying the randomcoefficient representation (2) using estimates
obtained from (4). Specifically, at each point in time the parameters are selected by
choosing the point on the quantile grid that falls closest to a uniform random draw
uk,t for each equation k. Iterating this forward allows us to draw a sample path for
yt+1, . . . , yt+12, and repeating this a large number of times allows us to compute a
variety of statistics at each point in time (quantile forecasts, mean forecasts, etc.).

This algorithm contrasts with the approach introduced by Adrian, Boyarchenko, and
Giannone (2019) in a univariate context whereby the skewed t distribution of Azzalini
and Capitanio (2003) is fitted to closely match a handful of conditional quantile fore-
casts produced using quantile regression estimates. On the other hand, it is closer in
spirit to the method used by Chavleishvili and Manganelli (2021) for stress testing and
Chavleishvili et al. (2021) for risk management in a macroprudential context as we can
condition forecasts on scenarios by simply imposing predetermined sequences of quan-
tiles. It also mirrors Ruzicka (2021)’s approach for obtaining quantile impulse responses.
Considering this is how the QVAR model was introduced, we limit our attention to this
approach.

An important detail concerns the choice of a grid of quantiles. We opted to use a
relatively fine grid of 100 equally spaced quantiles, but note that some of those quantiles

5Using weights based on its asymptotic covariance matrix, β̂(k)(τk) viewed as a process over τk ∈ [0, 1]
converges to a K p + k-dimensional standard Brownian Bridge. The interested reader can also find some
results for the quantile regression estimator under unit roots and cointegration in Koenker (2004), Xiao
(2009) or Cho, Kim, and Shin (2015).
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may not be well estimated. Chernozhukov, Fernández-Val, and Kaji (2017) suggested
using extreme value methods for quantiles beyond τT/(K p+K) ≤ 15 where K p+K is the
number of parameters in the last equation. For example, a bivariate QVARmodel with a
single lag estimated on 400 observations gives us the interval [0.15, 0.85], whereas adding
a second lag reduces it to [0.225, 0.775]. Parsimony may thus be even more important
when dealing with quantiles in the tails. For this reason, we follow Chavleishvili and
Manganelli (2021) and Chavleishvili et al. (2021) and use a QVAR model with one lag
throughout the paper. This also obviates the need to implement necessarily different
lag selection procedures across models. Moreover, while information criteria to choose
the number of lags in each equation separately have been proposed in the literature
(e.g., Koenker and Machado (1999)), there currently is no counterpart for the entire
QVAR process and this question is thus left open to future research.

3. Forecasting Experiment

In this section, we conduct an out-of-sample forecasting experiment in which we target
many monthly US variables obtained from the FRED-MD data set (McCracken and Ng
(2016)) spanning the period between January 1959 to June 2022. Since all our models will
also feature the National Financial Conditions Index (NFCI), which is observed from
January 1971 to June 2022, we select all target variables from FRED-MD that started at
least as early as the NFCI and did not feature any missing values in the July 2022 version
of the data. This leaves us with a subset of 112 target variables. To obtain many cycles of
recessions and expansions, we set the start of the out-of-sample period to January of
1980, giving us six NBER recessions and a total of 510 periods for model comparison.

All target variables are transformed to induce stationarity.6We target the resulting
values in h = 1, . . . , 12 months rather than h period averages as forecasts are produced
iteratively through simulations for all models.7 Finally, given our focus on forecasting
tails, a difficult balance must be struck between allowing a large sample size for estima-
tion and allowing the model to adapt to structural changes. We opt for a rolling window
of 400 observations, allowing the window to initially expand to this size to include the
two recessions from the early 1980s in the analysis.

6We follow McCracken and Ng (2016), except that we do not take second differences on interest rates,
unemployment rates, monetary aggregates and prices as in Bernanke, Boivin, and Eliasz (2005). All
transformations are given in Table A1 Appendix.

7Results in Goulet Coulombe et al. (2021) suggests averaging single period forecasts ex post is generally
preferable to directly targeting averages when point forecasts are of primary interests, but this question
lies beyond the scope of this paper.
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3.1. Models

The forecasting experiment includes four bivariate models with the targeted variable
orderedfirst, followed by theNFCI. Thesemodels are theQVAR, aswell as three paramet-
ric alternatives: a VAR-N, a VAR-GARCH and a VAR-SV. The VAR-N is a useful benchmark
insofar as it is not obvious that modeling moments beyond the mean is meaningful
for macroeconomic data (Plagborg-Moller et al. (2020)). The VAR-GARCH and VAR-SV
models are interesting as common tools in the structural VAR literature, which relaxes
the iid assumption of the VAR-N by allowing conditional volatility to change over time.
We further consider two additional variations on the baseline QVAR model by intro-
ducing latent factor and latent quantile factor estimates as regressors, a set of hitherto
unexplored extensions we call a factor augmented QVAR or QFAVARmodel.

VAR-N. This model takes the form

yt+1 = ν + A1 yt + ut+1, ut+1 ∼ N(0,Σ).(5)

We estimate mean parameters ν and A1 by ordinary least squares. The covariance
matrix of innovations is estimated as Σ̂ =

∑T
t=2 ûtû

′
t/(T – K p – 2) where K = 2, p = 1 and

ût are residuals.

VAR-GARCH. We follow the structural VAR literature (e.g., Normandin and Phaneuf
(2004); Bouakez and Normandin (2010); Bouakez, Chihi, and Normandin (2014)) and
create a multivariate GARCH process by imposing that each “structural” shock follows
its own GARCH(1,1) process. Hence, we replace the normal for the vector of innovations
with

ut+1 = Dϵt+1(6)

ϵk,t+1 =
√
hk,t+1zk,t+1, zk,t+1 ∼ N(0, 1)

hk,t+1 = (1 – αk – βk) + αkϵ
2
k,t + βkhk,t.

where D is lower triangular to use the same restriction as in the QVARmodel. We use
the same parameter estimates for ν, A1 and Σ as we do for the Gaussian VAR case. D̂
is obtained from a Cholesky factorization of Σ̂. Series of “structural residuals” ϵ̂k,t
are then obtained on which individual GARCH(1,1) processes are fitted by maximum
likelihood.
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(Bayesian) VAR-SV. We use one of the restrictedmodels featured in Chan and Eisenstat
(2018), which essentially replaces individual GARCH processes featured in the VAR-
GARCHmodel shown above by (random walk) stochastic volatility processes.

B0 yt+1 = µ + B1 yt + ϵt+1(7)

ϵk,t+1 = exp
(
hk,t+1/2

)
zk,t+1, zk,t+1 ∼ N(0, 1)

hk,t+1 = hk,t + σkζk,t+1, ζk,t+1 ∼ N(0, 1)

We impose recursive short-run restrictions as with the QVAR and VAR-GARCHmodels
such that B0 is set to a lower triangular matrix with a unit diagonal. It is a common
choice (e.g., Cogley and Sargent (2005) and Primiceri (2005)). The model is estimated
using Bayesian methods with the following priors:

θ :=
(
vec

(
(µ,B1)′

)′ , b0,2,1)′ ∼ N(bθ,Vθ), h0 ∼ N(bh,Vh) and σk ∼ IG(νk, Sk).

We set bθ and Vθ as a Minnesota-type prior with common hyperparameter values
centered on a randomwalk, except for the growth rates of consumption, exchange rates
and stock market indexes, which we center on white noise. We center the value for
b0,2,1 at 0 with a relatively large variance of 10 and likewise for the initial log variance
(bh = 0 and Vh = 10) following Chan and Eisenstat (2018). We use the shape νk = 5 and
scale Sk = 0.1(νk – 1) as in Chan and Eisenstat (2018), reflecting a relatively diffuse prior
centered on a small value (here, 0.1).

Their Gibb Sampling algorithm has two particular features. First, it jointly samples
mean parameters θ for each equation whereas other algorithms would sample free
elements in B0 separately. Second, while it applies the common auxiliary mixture
sampler proposed by Kim, Shephard, and Chib (1998), which allows using methods for
linear Gaussian state-space models, it also samples the sequence of log variances (ht)Tt=1
in a single step for each equation using the precision sampler of Chan and Hsiao (2014).
These features make the algorithm fairly efficient.

QFAVAR. As a means of exploring the value of a data-rich environment for macroeco-
nomic forecasting, we introduce latent factor estimates as part of the vector of variables
yt in (2). This is similar in spirit to the FAVAR model of Boivin and Ng (2005), although
we do not impose restrictions that would strictly justify treating the target variable and
NFCI as “observed” factors. In all cases, latent factors are recursively estimated using
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the in-sample data window. We collect our 112 variables into a matrix X and let variable
i obey

xi,t = λ′i f t + νi,t(8)

where f t is a r × 1 vector of factors and λi is the corresponding vector of loadings. Fol-
lowing common practice since Stock and Watson (2002a,b), we obtain factor estimates
f̂ t by principal component. We set r = 1 factor out of concern for parsimony so our
vector of time series becomes yt = ( y1,t, f̂ t,NFCIt)′. A natural alternative would be to
consider doing the same thing using the quantile latent factors recently introduced by
Chen, Dolado, and Gonzalo (2021). In this case, we have

Qxi,t
(
τ| f t(τ)

)
= λi(τ)

′ f t(τ) + νi,t(τ)(9)

with f t(τ) being r(τ) × 1. We obtain estimates f̃ t(τ) for the 5th and 95th quantiles
using the IQR algorithm (Chen, Dolado, and Gonzalo (2021)). Again, we set r(τ) = 1 for
parsimony and use yt = ( y1,t, f̃ t(0.05), f̃ t(0.95),NFCIt)′.

3.2. Relative Forecasting Evaluation

To perform the model comparison, we follow Carriero, Clark, and Marcellino (2024)
and Carriero, Clark, and Marcellino (2022) in our evaluation of density forecasts and
adopt the quantile weighted continuous ranked probability score (CRPS) introduced by
Gneiting and Ranjan (2011). For modelm and variable v, we define the h period ahead
quantile forecasts as

q̂t+h,v,m(τ) := Q̂(m)yt+h,v (τ|Ft) .

and quantile scores as

QSτ
(
q̂t+h,v,m(τ), yt+h,v

)
:= ρτ

(
q̂t+h,v,m(τ) – yt+h,v

)
(10)

where we recall that ρτ(u) := u(τ – I{u < τ}). For a grid of N quantiles, the quantile
weighted CRPS is defined as

qwCRPS
(
q̂t+h,v,m,ν, yt+h,v

)
=

2
N – 1

N∑
j =1

ν(τj )QSτj
(
q̂t+h,v,m(τj ), yt+h,v

)
(11)
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where ν :=
(
ν(τj )

)N
j =1

is a vector of weights and q̂t+h,v,m :=
(
q̂t+h,v,m(τj )

)N
j =1

stacks

quantile forecasts into a vector. Gneiting and Ranjan (2011) proposed using the functions
ν(τj ) = τ2j , ν(τj ) = (1 – τj )

2 and ν(τj ) = (2τj – 1)2 to put more weight on the right tail, left
tail or both tails jointly. The use of this scoring rule is motivated by the fact that it is
minimized in expectation by the true conditional density (Gneiting and Raftery (2007)).

Diebold and Mariano (1995) tests allow us to evaluate the null hypothesis of equal
forecasting performance between modelsm1 andm2 using the following regression

qwCRPS
(
q̂t+h,v,m1,ν, yt+h,v

)
– qwCRPS

(
q̂t+h,v,m2,ν, yt+h,v

)
= αv,h,m1,m2 + vt+h,v,m1,m2

for each forecasting horizon h and variable v where αv,h,m1,m2 = 0 under the null.
8 In

this context, note that αv,h,m1,m2 < 0 means that modelm1 is performing better than
modelm2 (i.e., its average score is lower).

3.3. Absolute Forecasting Evaluation

In an effort to mitigate concerns with the choice of benchmark models, we supplement
the model comparison with specification tests used in finance for evaluating value-at-
risk models.

QuantileMincer-Zarnowitz Tests. Gaglianone et al. (2011) proposed a test of quantile fore-
cast optimality in the spirit of Mincer and Zarnowitz (1969) based on a quantile regres-
sion by adapting an idea from Christoffersen, Hahn, and Inoue (2001). Let Q yi,t+h (τ|Ft)
and Q̂ yi,t+h (τ|Ft) be the h-period ahead τ-th quantile of variable i conditional on in-
formation Ft and its forecast by some model, respectively. If the model is correctly
specified, we should have

Q yi,t+h (τ|Ft) = α0(τ) + α1(τ)Q̂ yi,t+h (τ|Ft) := x
′
tα(τ)

with α(τ) := (α0(τ),α1(τ))′ = (0, 1)′ and xt :=
(
1, Q̂ yi,t+h (τ|Ft)

)′
. These parameters can

be estimated by a quantile regression of realized values yi,t+h on the quantile forecasts
Q̂ yi,t+h (τ|Ft) at the corresponding quantile τ. Under mild regularity conditions, the
Wald statistic testing the null of correct specification has a χ22 asymptotic distribution.

9

8The constant is estimated by OLS and HAC standard errors are used in all cases.
9For the implementation, we follow the authors’ suggestion and use Koenker and Machado (1999)’s

estimator for the covariance matrix.
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Note that simulation evidence in Gaglianone et al. (2011) suggests this test suffers from
size distortion in small sample (the true size tends to be larger than the nominal size),
but it tends to enjoy as much or more power than the more common alternatives tests
based on dummy variables such as Kupiec (1995), Christoffersen (1998) or Engle and
Manganelli (2004).

Coverage Tests. We begin by defining It := 1
{
yi,t ∈

[
Q̂ yi,t+1 (0.05|Ft) , Q̂ yi,t+1 (0.95|Ft)

]}
as a dummy variable indicating when observations fall inside this symmetric 90% inter-
val.10 Following Kupiec (1995), Christoffersen (1998) leverages the idea that a correctly
specified model implies It should be an iid Bernoulli variable with a ρ = 0.9 success rate.
The likelihood is thus given by

L(ρ) = ΠTt=1(1 – ρ)
1–ItτIt = (1 – ρ)T0ρT1

where T0 =
∑T
t=1(1 – It) and T1 =

∑T
t=1 It where T is the size of the pseudo-out-of-

sample period. The unconditional coverage test is based on a likelihood ratio statis-
tic that compares this likelihood evaluated at the nominal coverage rate ρ = 0.9 and
its sample counterpart, ρ̂ = T–1

∑T
t=1 It, which is the maximum likelihood estima-

tor. Under the null, Christoffersen (1998) shows the likelihood ratio statistic satisfies
LRuc = –2 log (L(ρ)/L(ρ̂))

d→ χ21 . The conditional coverage test changes the alternative
hypothesis by modelling possible serial dependence in It as a first order Markov Chain
with transition matrix

Π1 :=

[
1 – π01 π01

1 – π10 π11

]

where πij = P (It+1 = j |It = i). The likelihood function is then given by

L (Π1) = (1 – π01)T00π
T01
01 (1 – π11)

T10πT1111

where Tij :=
∑T
t=2 1

{
It+1 = j

}
1
{
It = i

}
counts transition cases with the maximum

likelihood estimator being again the sample shares of the relevant events, that is π̂i1 =
Ti1/(Ti0 + Ti1). Under the null, Christoffersen (1998) shows the likelihood ratio statistic
satisfies LRcc = –2 log

(
L(ρ)/L(Π̂1)

)
d→ χ22. Note that for both coverage tests, we follow

10Since these are binary events, this is equivalent to jointly testing coverage in the 5% tail on each side
of the distribution.
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Christoffersen (2004) and adopt the Monte Carlo testing approach of Dufour (2006) and
obtain exact finite sample p-values instead of relying on asymptotic approximations.11

The ability to control the size of these tests exactly in small sample is an advantage they
possess over the previous specification tests. However, the power of those tests varies
with sample size12 and they require non overlapping forecasts, so we only perform
these test for h = 1. Nevertheless, as QVAR (and QFAVAR) models produce forecasts
iteratively, misspecification at h = 1 would naturally propagate forward and may pose
problems with quantile forecasting accuracy at longer horizons.

4. Discussion

As explained in the previous sections, we rely on Diebold and Mariano (1995) tests to
evaluate the forecasting accuracy of the QVARmodel relative to the three parametric
alternatives, VAR-N, VAR-GARCH and VAR-SV. This raises the problem of concisely
reporting a very large number of results. We proceed in a manner similar to Stock and
Watson (1998) who report test rejection counts. We use Diebold andMariano (1995) tests
as a means of categorizing variables. Specifically, given that we seek to minimize the
tail weighted quantile CRPS, we consider that the QVARmodel “wins” against a given
benchmark, at a given horizon and for a given variable when it has a lower average
score and the null of equal forecasting performance is rejected at 5%. The QVAR model
“loses” if it has a higher average score and the null of equal forecasting performance is
rejected at 5%. In all other cases, we consider that the models have equal forecasting
performance. A similar idea is applied to build figures for the Gaglianone et al. (2011)
and Christoffersen (1998) tests and the same figures are presented for QFAVAR models.

4.1. QVAR Results

Figure 1 features two panels that each display the number of variables in each of the
eight groups featured in FRED-MD for which the QVARmodel wins and loses. Group
results are stacked so that the total number of wins and losses correspond to the top
of area for group one. The figure shows results for each decade of the out-of-sample
period, and the whole out-of-sample period and for each of the parametric benchmark.
As an example of how to read the figure, consider the area plot displayed in the first row
and first column of panel A. The counts refer to the number of variables for which the

11The procedure is detailed in Section A of the Appendix.
12See, for example, simulation evidence in Gaglianone et al. (2011).
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QVARmodel statistically significantly outperformed the VAR-N models in the 1980s. At
horizon 3, there are about 40 variables out of 112 and about 10 of those variables are in
the labor market (group 2) category. The same entry in panel B shows the VAR-Nmodels
statistically significantly outperform the QVARmodels for fewer than 10 variables out
of 112 at all horizons.

We begin by focusing on the last column of each panel for the average relative
performance across the whole out-of-sample period. For this period, panel A shows
that the QVAR models significantly outperform the VAR-N models in 25% to 50% of
cases depending on the horizon. It also significantly improves upon the VAR-GARCH
and VAR-SV models in about 25% and 10% of cases, respectively. Importantly, panel
B reveals that the QVAR model rarely does significantly worse than any of the three
benchmarkmodels considered, losing in around 18% of cases at a horizon of onemonth
against the VAR-GARCH and VAR-SV models and in only 5% to 10% of cases at all other
horizons. Breaking down results across different categories of variables, the QVAR
model appears to perform best relative to benchmark models when applied to the labor
market (group 2) at all horizons and to interest and exchange rates (group 6), especially
at shorter horizons. We note in the few cases where the QVARmodel is outperformed
across all benchmark models, most are prices (group 6). The bulk of issues of relative
performances identified in the short 2020s sub-sample included in the forecasting
experiment are also related to prices.

Shifting our attention across the first five columns of each panel, we can get a sense
the stability of those results. The patterns of relative performance appear to vary slightly
over time, but the broad qualitative message remains the same. Across each decade,
the QVAR model rarely does worse than benchmark models, more frequently improves
upon them, and both of these observations are concentrated in the same categories of
variables.

Of course, Figure 1 does not tell us whether the statistically significant differences
in performance between models are meaningfully large. To this end, Figure 2 displays
the average log differences in scores between the QVAR and VAR-GARCH and VAR-SV
13 models over the whole out-of-sample period for each variable in each of the eight
groups of variables in FRED-MD. Values below zero indicate that the QVAR models
have a smaller average score than the benchmark and a rejection of the null in the
corresponding Diebold and Mariano (1995) test in either direction is indicated by the
13Panel B omits the results for the oil price variable in group 7 because the VAR-SV model performs

too poorly and it hindered visualizing the rest of the results. The random walk process for stochastic
volatilities seems to be the culprit.
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color yellow. For example, take the plot in the first row and first column of panel A. It
shows that there is a variable in the output and income (group 1) for which the QVAR
model is about 15%more accurate at forecasting the tails than the VAR-GARCHmodel
at all horizons, and this difference is statistically significant at 5%.
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A. Number of Cases where QVAR Beats the Benchmark

B. Number of Cases where QVAR Loses to the Benchmark

FIGURE 1. QVAR Diebold-Mariano Tests (tail-weighted CRPS)

Note: The QVAR model wins (loses) when it has a lower (higher) average score and the Diebold-Mariano
statistic is significant at the 5% level. Columns are periods and rows are different benchmark models.
Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)Housing, (4) Consumption,
orders and inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock
market.
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A. QVAR and VAR-GARCH

B. QVAR and VAR-SV

FIGURE 2. QVAR Relative Scores (tail-weighted CRPS)

Note: Negative values are improvements. Yellow corresponds to rejecting the null of equal scores at
5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups are: (1) Output and
income, (2) Labor market, (3)Housing, (4) Consumption, orders and inventories, (5)Money and credit,
(6) Interest and exchange rates, (7) Prices and (8) Stock market.

We find that the statistically significant improvements provided by QVAR over the
VAR-GARCH and VAR-SV benchmarks routinely exceed 10%, even sometimes 20% or
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more, across horizons. These gains tend to concentrate in the categories of output and 
income (group 1), labor market (group 2) and money and credit (group 5). Importantly, 
the QVAR model almost never does much worse than the VAR-GARCH. However, it does 
underperform the VAR-SV model by statistically significant margins in excess of 10%. 
This can be seen in interest and exchange rates (group 6), as well as prices (group 7), 
even as it happens infrequently. Figure A1 in the appendix displays the corresponding 
comparison between the QVAR and VAR-N models, where the QVAR model is consid-
erably more favorable: it virtually never does worse, it almost always does better, the 
improvements can be large or even very large and it’s frequently statistically significant.

Figures 1, 2 and A1 all point to the QVAR model performing relatively better against 
the VAR-N model than the VAR-GARCH and VAR-SV models. Moreover, this pattern 
seems to hold over time. Since all four models imply the same linear form for the 
conditional expectation of the target variable at all horizons, these results suggest 
that there is enough information in macroeconomic data to meaningfully capture 
variation in conditional volatility. Overall, these figures also offers evidence in favor 
of the purported robustness of the QVAR model in the sense that it tends to perform 
as well as or better than, but almost never much worse than, competing parametric 

alternatives.
Perhaps surprisingly, Figure 3 reveals that this good relative performance of the 

QVAR model is generally not driven by recessions. When a forecasted value is realized 
in what the NBER later determines to be a recession month, the QVAR model perfor-
mance is statistically indistinguishable from that of benchmark models in 75% to 85%
of cases depending on the model and horizon. There is a slightly greater advantage 
during recessions against the VAR-SV than the VAR-N and VAR-GARCH models at longer 
horizons. Given that this pattern does not hold against the VAR-GARCH models, this 
may be due to the fact that the random walk in stochastic volatility may overstate the 
persistence of uncertainty in those circumstances. This finding points to the presence 
of important variations in macroeconomic risks during periods of economic expansion 
that aren’t as well captured by the parametric alternatives we considered. One possible 
explanation is that the binary discrete approximation to what is an otherwise continu-
ous state variable we call “the business cycle” is neglecting meaningful information 
and more than two states should be considered. Alternatively, we can also note that the 
concept of a recession is fuzzy and the NBER recession dates are up for debate.
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FIGURE 3. QVAR Recesssion Comparison (tail-weighted CRPS)

Note: The QVAR model wins (loses) when it has a lower (higher) average score and the Diebold-Mariano
statistic is significant at the 5% level. Rows are different benchmarkmodels. Colors indicate FRED groups:
(1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5)
Money and credit, (6) Interest and exchange rates, (7) Prices and (8) Stock market.

We now turn to specification tests. Figure 4 displays results for the quantile Mincer-
Zarnowitz tests of Gaglianone et al. (2011) for forecasts at the 5th and 95th quantiles
seperately. The figure counts the number of variables for which the null hypothesis of
a correctly specified quantile forecast cannot be rejected at a level of 5% and breaks
these results down for each decade in the out-of-sample period, as well as the whole
period, and each group of variables in FRED-MD. As an example of how to read the
figure, the area plot in the column of the first row shows that at a horizon of 1 and 2
months, we cannot reject the hypothesis that the QVAR forecast is well specified at 5%
during the 1980s for about 75 out of 112 variables. This is also true for over 20 labor
market variables (group 2).

Looking across all columns and rows, we see that the null hypothesis of optimal
quantile forecasts cannot be rejected for 25% to 50% of cases, depending on the horizon
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and period covered. However, we consistently find greater evidence of misspecification
at longer than at shorter horizons. Of all variable types, the test again singles out labor
market (group 2) and interest and exchange rates (group 6) variables as cases where the
model performs particularly well. This picture is also relatively stable over time.

FIGURE 4. Number of Optimal QVAR Forecasts

Note: Number of cases where we obtain a non-rejection of the null of optimal forecast at 5% for the
Gaglianone et al. (2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile
forecasts, respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)
Housing, (4) Consumption, orders and inventories, (5)Money and credit, (6) Interest and exchange rates,
(7) Prices and (8) Stock market.

Results for coverage tests are presented in Figure 5. Here we focus on one month
ahead 5th and 95th quantile forecasts,14 so an observation that falls outside of the 90%
interval between themwill be our notion of a “tail event.” If the QVARmodel is correctly
specified, the unconditional probability of a tail event would be 10%. That’s the null
of the unconditional coverage tests. Moreover, “tail events” should be “unpredictable”
and, in particular, they shouldn’t be serially correlated. The null of correct conditional

14Recall that the tests are carried out only for horizon h = 1 for reasons discussed in Section 3.
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coverage jointly tests both of these restrictions. The figure shows the shares of non-
rejection of the null for each of those tests for each group of variables and each decade
of the out-of-sample period.

FIGURE 5. Unconditional and Conditional Coverage Tests on QVAR (90% Interval)

Note: Shares of non-rejection of the null at 5% using Monte Carlo p-values (Dufour (2006)). UC is the
unconditional coverage test and CC is the conditional covargae test. Columns are periods. Colors indicate
FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and
inventories, (5)Money and credit, (6) Interest and exchange rates, (7) Prices and (8) Stock market and
(All) 112 variables.

The last column shows results for the whole pseudo-out-of-sample period. We can
see in the bottom row that the test fails to reject the null of correct unconditional
coverage in almost 50% of cases and, likewise, for more than half of output and income
(group 1), labor market (group 2) and interest and exchange rates (group 6). However,
we can see that the null of correct conditional coverage is rejected over 90% of times
across all variable groups. This means that, on average, QVAR quantile forecasts lead to
a correct probability of 10% for observing tail events, but it leads to tail events that are
serially correlated. Since forecasts at longer horizons are produced iteratively, this may
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explain the consistent pattern in Figure 4 where the null of optimal quantile forecasts 
can always be rejected more frequently at longer than at shorter horizons.

4.2. QFAVAR Results

Figure 6 presents the results for the Diebold and Mariano (1995) tests comparing both 
QFAVAR models with the QVAR model. The last column of both panels shows that on 
average over the whole pseudo-out-of-sample period, the QVAR model and both QFAVAR 
models have statistically indistinguishable tail-density forecasting performances in 
85% to 90% of cases depending on the horizon and the type of factor included. More 
differences can be noticed during the 1990s and 2010s where the addition of either PCA 
or IQR factors improves performance for prices (group 7) in particular. Recall that the 
few cases in which the VAR-SV model significantly outperforms the QVAR model with 
relatively large magnitudes are concentrated in this category.

Figure 7 displays the average log differences in scores, as well as whether these 
differences are statistically significant. As the QFAVAR models serve as a benchmark in 
these comparisons, adding factors is found to be helpful when the values displayed are 
positive. We can see that the changes in accuracy resulting from the addition of either 
type of factors are relatively small, with the vast majority below 5% in either direction. 
This corroborates the main finding from the previous figure and suggests that adding 
factors usually doesn’t substantially affect tail-density forecasting accuracy. That being 
said, panel A does show a few moderate improvements obtained from the addition of a 
PCA factor in interest and exchange rates (group 6) and prices (group 7) variables. At 
the same time, introducing a PCA factor can be costly, as we can see in panel A, with 
some moderately negative values in money and credit (group 5), as well as in some of 
the interest and exchange rate (group 6) variables.

Perhaps where differences are most striking is during NBER recessions as can be 
seen in Figure 8. QFAVAR models outperform the QVAR model in 12% to 18% of cases 
depending on the horizon and type of factors considered. It also appears to be rarely 
costly to add factors when the realized value turns out to fall during a recession. It is 
especially visible with the labor market (group 2) where adding a PCA factor helps at 
all horizons, while the IQR factors seem to be most helpful at shorter horizons.
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A. Number of Cases where QVAR Loses to QFAVAR

B. Number of Cases where QVAR Beats QFAVAR

FIGURE 6. QFAVAR Diebold-Mariano Tests (tail-weighted CRPS)

Note: The QVAR model wins (loses) when it has a lower (higher) average score and the Diebold-Mariano
statistic is significant at the 5% level. Columns are periods and rows are different benchmark models.
Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)Housing, (4) Consumption,
orders and inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock
market.
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A. QVAR and QFAVAR (PCA)

B. QVAR and QFAVAR (IQR)

FIGURE 7. QFAVAR Relative Scores (tail-weighted CRPS)

Note: Positive values are improvements over the QVARmodel. Yellow corresponds to rejecting the null
of equal scores at 5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups
are: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5)
Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.
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FIGURE 8. QVAR and QFAVAR Recesssion Comparison (tail-weighted CRPS)

Note: The QVAR model wins (loses) when it has a lower (higher) average score and the Diebold-Mariano
statistic is significant at the 5% level. Rows are different benchmarkmodels. Colors indicate FRED groups:
(1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and inventories, (5)
Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market.

Introducing latent factor estimated by either PCA or IQR in the set of variables used
by the QVAR model to produce forecasts has little effect on its tail forecasting accuracy.
However, there remains the question of whether we can find evidence that QFAVAR
models tend to be less frequently misspecified than the QVAR model. Figure 9 displays
the number of cases where the null of a correctly specified quantile forecast at the 5th
and 95th quantiles could not be rejected at the 5% level. We can see in the last column
that using IQR factors rather than a PCA factor results in slightly fewer rejections at
both quantiles over all horizons across the whole pseudo-out-of-sample period. Adding
factors does not meaningfully impact conclusions we previously reached for the QVAR
model, nor their stability over time, except that including either PCA and IQR factors
slightly reduces the number of rejections.

Finally, Figure 5 presents the shares of non-rejection of the null hypothesis of cor-
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rect unconditional and conditional coverage, respectively, for both QFAVAR models. On
average across variable categories and time, introducing a PCA factor slightly increases
the cases in which the model is found to have incorrect coverage. Moreover, it does not
address the issue of excessive clustering of violations of the 5th and 95th conditional
quantile bounds. Two notable exceptions are with interest and exchange rates (group
6) and the stock market (group 8) where both the issues with coverage and clustering
are improved. The story is quite different when we introduce IQR factors. This QFAVAR
model has more frequently correct unconditional and conditional coverage across time
and variable categories. This provides some suggestive evidence that factors specifi-
cally targeting tail behavior in large data sets carry useful information that allows for
improving the timing of changes in risk such that the model less frequently leads to
serially correlated tail events (i.e., observations that lie in the tails of its forecasts). This
would be worth exploring in future research.
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A. Number of Optimal QFAVAR (PCA) Forecasts

B. Number of Optimal QFAVAR (IQR) Forecasts

FIGURE 9. QFAVAR Relative Scores (tail-weighted CRPS)

Note: Number of cases where we obtain a non-rejection of the null of optimal forecast at 5% for the
Gaglianone et al. (2011) test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile
forecasts, respectively. Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)
Housing, (4) Consumption, orders and inventories, (5)Money and credit, (6) Interest and exchange rate,
(7) Prices and (8) Stock market.
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A. PCA Factor

B. IQR Factors

FIGURE 10. Unconditional and Conditional Coverage Tests on QFAVARs (90% Interval)

Note: Shares of non-rejection of the null at 5% using Monte Carlo p-values (Dufour 2006). UC is the
unconditional coverage test and CC is the conditional covargae test. Columns are periods. Colors indicate
FRED groups: (1) Output and income, (2) Labor market, (3) Housing, (4) Consumption, orders and
inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock market and
(All) 112 variables.
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5. Conclusion

In this paper, we evaluated the performance of the QVARmodel for forecasting macroe-
conomic risk. To this end, we conducted a large out-of-sample forecasting experiment
on US monthly variables using VAR-N, VAR-GARCH and VAR-SV models as parametric
benchmarks. All models are specified as bivariate models featuring the target variables
and the NFCI.

We find that the QVAR model provides significant improvements in tail-density fore-
casting accuracy over the VAR-Nmodel in close to half of all variables considered. Those
improvements are frequently quantitatively important, reaching 10% to 30% in many
cases. The QVARmodel also offers improvements over VAR-GARCH and VAR-SVmodels,
albeit in fewer cases. For all three benchmark models, improvements are concentrated
in the labor market as well as interest and exchange rate variables. However, we also
find evidence that observations falling in the tails of QVAR forecasts tend to be serially
correlated, which points to misspecification.

We then extend the QVARmodel to a data-rich environment by introducing PCA and
IQR factors as additional predictors. The resulting QFAVARmodel significantly improves
upon theQVARmodel for forecastingmacroeconomic risks in 13%of our target variables.
Most of the improvements are tied to labor market variables. Interestingly, adding IQR
factors also reduces the incidence of serial correlations with observations that fall
in the tails of density forecasts. This suggests the specification issue with the QVAR
model may be alleviated by adding information in the model and that IQR factors, in
particular, carry information that helps improve the timing of predicted changes in
macroeconomic risks.

In summary, we find that QVAR and QFAVARmodels are adequate tools for model-
ing macroeconomic risk. This is relevant from a macroprudential risk management
perspective, as in Chavleishvili et al. (2021), since the relevance of conclusions drawn
from such studies requires reliable and accurate models of risk.
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Appendix A. Monte Carlo Tests

The idea behind the Dufour (2006) Monte Carlo testing framework is that exact finite
sample p-values can be obtained, even when an analytic formula for the distribution of
a test statistic under the null is unavailable, provided we can simulate it. In our case,
we draw N samples of T observations of It ∼ iid B(0.9) and compute likelihood ratio
statistics LRi for i = 1, . . . ,N. If LR0 is the corresponding statistic we computed on the
actual data, then the p-value is given by

p̂n(LR0) =
NĜN(LR0) + 1

N + 1

where ĜN(LR0) =
∑N
i=1 I

{
LRi > LR0

}
/N. As noted by Christoffersen (2004), the distri-

bution is discrete such that ties can happen and need to be handled. They propose
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breaking ties by drawing N + 1 uniform random variables Ui ∼ U[0, 1] where i = 0, . . . ,N
and using

ĜN(LR0) = 1 –
1
N

N∑
i=1

1
{
LRi ≤ LR0

}
+
1
N

N∑
i=1

1
{
LRi = LR0

}
1
{
Ui ≥ U0

}
in the above formula.

Appendix B. Additional Results

FIGURE A1. QVAR and VAR-N Relative Scores (tail-weighted CRPS)

Note: Negative values are improvements. Yellow corresponds to rejecting the null of equal scores at
5%. Yellow corresponds to not rejecting the null of equal scores at 5%. FRED groups are: (1) Output and
income, (2) Labor market, (3)Housing, (4) Consumption, orders and inventories, (5)Money and credit,
(6) Interest and exchange rate, (7) Prices and (8) Stock market.
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A. Null Constant

B. Unit Slope

FIGURE A2. Number of Optimal QVAR Forecasts

Note: Number of cases where we obtain a non-rejection of the null at 5% for the Gaglianone et al. (2011)
test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts, respectively.
Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)Housing, (4) Consumption,
orders and inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock
market.
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A. Null Constant

B. Unit Slope

FIGURE A3. Number of Optimal QFAVAR (PCA) Forecasts

Note: Number of cases where we obtain a non-rejection of the null at 5% for the Gaglianone et al. (2011)
test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts, respectively.
Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)Housing, (4) Consumption,
orders and inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock
market.
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A. Null Constant

B. Unit Slope

FIGURE A4. Number of Optimal QFAVAR (IQR) Forecasts

Note: Number of cases where we obtain a non-rejection of the null at 5% for the Gaglianone et al. (2011)
test. Columns are periods and rows are the 5th (Q05) and 95th (Q95) quantile forecasts, respectively.
Colors indicate FRED groups: (1) Output and income, (2) Labor market, (3)Housing, (4) Consumption,
orders and inventories, (5)Money and credit, (6) Interest and exchange rate, (7) Prices and (8) Stock
market.
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Appendix C. Data Transformation

As in the reference documentation of FRED-MD, the transformation codes are (1) yt,
(2) ∆ yt, (3) ∆2 yt, (4) l n yt, (5) ∆l n yt, (6) ∆2l n yt and (7) yt/ yt–1 – 1.

TABLE A1. Data Transformation

ID Description Used FRED

RPI Real Personal Income 5 5
W875RX1 Real personal income ex transfer receipts 5 5
INDPRO IP Index 5 5
IPFPNSS IP: Final Products and Nonindustrial Supplies 5 5
IPFINAL IP: Final Products (Market Group) 5 5
IPCONGD IP: Consumer Goods 5 5
IPDCONGD IP: Durable Consumer Goods 5 5
IPNCONGD IP: Nondurable Consumer Goods 5 5
IPBUSEQ IP: Business Equipment 5 5
IPMAT IP: Materials 5 5
IPDMAT IP: Durable Materials 5 5
IPNMAT IP: Nondurable Materials 5 5
IPMANSICS IP: Manufacturing (SIC) 5 5
IPB51222s IP: Residential Utilities 5 5
IPFUELS IP: Fuels 5 5
CUMFNS Capacity Utilization: Manufacturing 1 2
HWI Help-Wanted Index for United States 5 2
HWIURATIO Ratio of Help Wanted/No. Unemployed 4 2
CLF16OV Civilian Labor Force 5 5
CE16OV Civilian Employment 5 5
UNRATE Civilian Unemployment Rate 1 2
UEMPMEAN Average Duration of Unemployment (Weeks) 1 2
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 1 5
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 1 5
UEMP15OV Civilians Unemployed - 15 Weeks & Over 1 5
UEMP15T26 Civilians Unemployed for 15-26 Weeks 1 5
UEMP27OV Civilians Unemployed for 27 Weeks and Over 1 5
CLAIMSx Initial Claims 5 5
PAYEMS All Employees: Total nonfarm 5 5
USGOOD All Employees: Goods-Producing Industries 5 5
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TABLE A1. Data Transformation (Continued)

ID Description Used FRED

CES1021000001 All Employees: Mining and Logging: Mining 5 5
USCONS All Employees: Construction 5 5
MANEMP All Employees: Manufacturing 5 5
DMANEMP All Employees: Durable goods 5 5
NDMANEMP All Employees: Nondurable goods 5 5
SRVPRD All Employees: Service-Providing Industries 5 5
USTPU All Employees: Trade, Transportation & Utilities 5 5
USWTRADE All Employees: Wholesale Trade 5 5
USTRADE All Employees: Retail Trade 5 5
USFIRE All Employees: Financial Activities 5 5
USGOVT All Employees: Government 5 5
CES0600000007 Avg Weekly Hours : Goods-Producing 1 1
AWOTMAN Avg Weekly Overtime Hours : Manufacturing 1 2
AWHMAN Avg Weekly Hours : Manufacturing 1 1
CES0600000008 Avg Hourly Earnings : Goods-Producing 5 6
CES2000000008 Avg Hourly Earnings : Construction 5 6
CES3000000008 Avg Hourly Earnings : Manufacturing 5 6
HOUST Housing Starts: Total New Privately Owned 4 4
HOUSTNE Housing Starts, Northeast 4 4
HOUSTMW Housing Starts, Midwest 4 4
HOUSTS Housing Starts, South 4 4
HOUSTW Housing Starts, West 4 4
PERMIT New Private Housing Permits (SAAR) 4 4
PERMITNE New Private Housing Permits, Northeast (SAAR) 4 4
PERMITMW New Private Housing Permits, Midwest (SAAR) 4 4
PERMITS New Private Housing Permits, South (SAAR) 4 4
PERMITW New Private Housing Permits, West (SAAR) 4 4
DPCERA3M086SBEA Real personal consumption expenditures 5 5
CMRMTSPLx Real Manu. and Trade Industries Sales 5 5
RETAILx Retail and Food Services Sales 5 5
ACOGNO New Orders for Consumer Goods 5 5
AMDMNOx New Orders for Durable Goods 5 5
ANDENOx New Orders for Nondefense Capital Goods 5 5
AMDMUOx Unfilled Orders for Durable Goods 5 5
BUSINVx Total Business Inventories 5 5

39



TABLE A1. Data Transformation (Continued)

ID Description Used FRED

ISRATIOx Total Business: Inventories to Sales Ratio 2 2
UMCSENTx Consumer Sentiment Index 2 2
M1SL M1 Money Stock 5 6
M2SL M2 Money Stock 5 6
M2REAL Real M2 Money Stock 5 5
BOGMBASE Monetary Base 5 6
TOTRESNS Total Reserves of Depository Institutions 5 6
NONBORRES Reserves Of Depository Institutions 7 7
BUSLOANS Commercial and Industrial Loans 5 6
REALLN Real Estate Loans at All Commercial Banks 5 6
NONREVSL Total Nonrevolving Credit 5 6
CONSPI Nonrevolving consumer credit to Personal Income 5 2
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 5 6
DTCTHFNM Total Consumer Loans and Leases Outstanding 5 6
INVEST Securities in Bank Credit at All Commercial Banks 5 6
FEDFUNDS Effective Federal Funds Rate 1 2
CP3Mx 3-Month AA Financial Commercial Paper Rate 1 2
TB3MS 3-Month Treasury Bill: 1 2
TB6MS 6-Month Treasury Bill: 1 2
GS1 1-Year Treasury Rate 1 2
GS5 5-Year Treasury Rate 1 2
GS10 10-Year Treasury Rate 1 2
AAA Moody’s Seasoned Aaa Corporate Bond Yield 1 2
BAA Moody’s Seasoned Baa Corporate Bond Yield 1 2
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1 1
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1 1
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1 1
T1YFFM 1-Year Treasury C Minus FEDFUNDS 1 1
T5YFFM 5-Year Treasury C Minus FEDFUNDS 1 1
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1 1
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1 1
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1 1
TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index 5 5
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5 5
EXJPUSx Japan / U.S. Foreign Exchange Rate 5 5
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TABLE A1. Data Transformation (Continued)

ID Description Used FRED

EXUSUKx U.S. / U.K. Foreign Exchange Rate 5 5
EXCAUSx Canada / U.S. Foreign Exchange Rate 5 5
WPSFD49207 PPI: Finished Goods 5 6
WPSFD49502 PPI: Finished Consumer Goods 5 6
WPSID61 PPI: Intermediate Materials 5 6
WPSID62 PPI: Crude Materials 5 6
OILPRICEx Crude Oil, spliced WTI and Cushing 5 6
PPICMM PPI: Metals and metal products: 5 6
CPIAUCSL CPI : All Items 5 6
CPIAPPSL CPI : Apparel 5 6
CPITRNSL CPI : Transportation 5 6
CPIMEDSL CPI : Medical Care 5 6
CUSR0000SAC CPI : Commodities 5 6
CUSR0000SAD CPI : Durables 5 6
CUSR0000SAS CPI : Services 5 6
CPIULFSL CPI : All Items Less Food 5 6
CUSR0000SA0L2 CPI : All items less shelter 5 6
CUSR0000SA0L5 CPI : All items less medical care 5 6
PCEPI Personal Cons. Expend.: Chain Index 5 6
DDURRG3M086SBEA Personal Cons. Exp: Durable goods 5 6
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 5 6
DSERRG3M086SBEA Personal Cons. Exp: Services 5 6
S&P 500 S&P’s Common Stock Price Index: Composite 5 5
S&P: indust S&P’s Common Stock Price Index: Industrials 5 5
S&P div yield S&P’s Composite Common Stock: Dividend Yield 1 2
S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 1 5
VIXCLSx VIX 1 1
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