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Abstract 
I propose a novel dynamic portfolio-balance model of the yield curve for Government of 
Canada bonds to evaluate the portfolio-balance effects of the Bank of Canada’s Government 
of Canada Bond Purchase Program. My results suggest that this program, launched on 
March 27, 2020, in response to the COVID-19 pandemic, lowered the weighted average 
maturity of the Government of Canada’s debt by approximately 1.4 years. This in turn reduced 
Canadian 10-year and 5-year zero-coupon yields by 84 and 52 basis points, respectively. 

Topics: Asset pricing; Central bank research; Coronavirus disease (COVID-19); Interest rates; 
Monetary policy 
JEL codes: E43, E52, G12, H63 

Résumé 
Je propose un nouveau modèle de portefeuille dynamique de la courbe de rendement des 
obligations du gouvernement du Canada pour évaluer les effets de portefeuille du Programme 
d’achat d’obligations du gouvernement du Canada de la Banque du Canada. Les résultats 
obtenus indiquent que ce programme, lancé le 27 mars 2020 en réponse à la pandémie de 
COVID-19, a permis d’abaisser l’échéance moyenne pondérée de la dette du gouvernement 
canadien d’environ 1,4 an. Cela a entraîné du même coup une diminution du rendement des 
obligations coupon zéro à dix ans et à cinq ans de 84 et 52 points de base, respectivement. 

Sujets : Évaluation des actifs; Recherches menées par les banques centrales; Maladie à 
coronavirus (COVID-19); Taux d’intérêt; Politique monétaire 
Codes JEL : E43, E52, G12, H63 



1 Introduction

In response to the economic fallout from the COVID-19 pandemic, the Bank of Canada

undertook extensive measures to stabilize financial markets and support the Canadian

economy. As the pandemic-induced lockdowns in March 2020 caused a sharp increase

in the demand for liquidity and led to severe market dysfunction, the Bank of Canada

lowered their policy rate to the effective lower bound and launched several asset purchase

programs. Such programs targeted various segments of the financial market, including

government, mortgage, corporate bonds, commercial paper, and bankers’ acceptances.1

These asset purchase programs, unprecedented in scale, represented 23.6% of Canada’s

2019 nominal GDP.2

Of these programs, the Government of Canada Bond Purchase Program (GBPP),

launched on March 27, 2020, played a pivotal part in the Bank of Canada’s response to

the pandemic in that it accounted for almost 80% of purchased assets. Initially, the GBPP

aimed to address the severe market dysfunction and restore liquidity in the government

bond market by purchasing at least $5 billion of Government of Canada (GoC) bonds per

week. However, by July 2020, as market conditions normalized, the GBPP transitioned

to a quantitative easing (QE) program to provide additional monetary stimulus while the

policy rate was constrained by the effective lower bound. This shift was designed to lower

long-term borrowing costs in the economy, given that purchases of GoC bonds of a given

maturity tend to bid up their price, thus lowering the interest rate that the bond pays to

its holders. This lower interest rate, in turn, transmits to mortgages and corporate loans,

which stimulates more borrowing and spending to support economic recovery and help

the Bank of Canada achieve its inflation target.3

1In addition to these asset purchase programs, the Bank of Canada introduced an extended repo
facility and a contingent term repo facility to support commercial bank funding conditions and counter
any severe market-wide liquidity stresses. See Johnson (2023) for a review of the Bank of Canada’s
market operations related to COVID-19.

2See Appendix A in CGFS (2023).
3See Beaudry (2020) and Kozicki (2024).
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Modern versions of the portfolio-balance theories of the yield curve support the use

of these large-scale asset purchase (LSAP) programs to put downward pressure on long-

term interest rates (see Greenwood and Vayanos, 2014; Vayanos and Vila, 2021). In

such models, risk-averse investors do not view all assets as perfect substitutes due to

their differences in liquidity, risk characteristics, tax treatment, regulatory constraints, or

institutional preferences.

In this paper, we focus on the imperfect substitutability among government bonds that

naturally arises from their differing sensitivities to interest rate movements. Specifically,

investors are concerned about the risk of capital losses on their bond holdings when

interest rates increase. Therefore, long-term and short-term bonds are seen as imperfect

substitutes because long-term bond prices are more sensitive to interest rate changes (i.e.,

when interest rates rise, the prices of long-term bonds fall more than the price of short-

term bonds, and vice versa). As a result, investors demand higher yields on long-term

bonds to compensate for the greater interest-rate risk compared to short-term bonds.

Consequently, by swapping private holdings of longer-maturity assets (such as long-term

government bonds) for short-term assets (such as settlement balances), a program like the

GBPP can reduce private investors’ exposure to interest-rate risk and thus put downward

pressure on long-term interest rates.4

Given the unprecedented scale of the Bank of Canada’s GBPP, this paper attempts

to quantify the portfolio-balance effects of this large-scale asset purchase program on the

Canadian yield curve. Specifically, our contribution is twofold. First, we quantify the

reduction in interest-rate risk implied by the Bank of Canada’s GBPP by computing

the reduction in the average maturity of the outstanding GoC marketable debt due to

the GBPP purchases. Our calculations suggest that, at its peak in November 2021, the

4While in this paper we focus on the imperfect substitutability caused by interest-rate risk differences
across long-term and short-term government bonds, these bonds can also differ in their degree of pledge-
ability as collateral (see, i.e., Williamson, 2016, for a theoretical model exploring these implications on
the degree of pledgeability as collateral on the impact of central bank purchases of government bonds).
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GBPP had lowered the weighted average maturity of the portfolio of the GoC investor

by about 1.4 years. For comparison, the pre-pandemic Federal Reserve Board’s large-

scale asset purchase programs, implemented in the U.S. as part of the Fed’s quantitative

easing programs, lowered the weighted average maturity of the portfolio of U.S. Treasury

marketable debt by approximately 1.7 years (see Greenwood et al., 2016).

Second, in a similar exercise to that in Hamilton and Wu (2012), we exploit an equiv-

alence between modern portfolio-balance models and Gaussian dynamic term structure

models (GDTSMs) to quantify the importance of the portfolio-balance effects of the Bank

of Canada’s GBPP on nominal bond yields. This equivalence allows us to calibrate a

portfolio-balance model based on those of Greenwood and Vayanos (2014) and Vayanos

and Vila (2021) by estimating a GDTSM by maximum likelihood using the approach

outlined in Joslin et al. (2011). Our estimates suggest that lowering the average maturity

of the GoC marketable debt by approximately 1.4 years translates to a reduction of the

Canadian 10-year (5-year) zero-coupon yield by 84 (52) basis points.

In this paper, we focus on the portfolio-balance effects of the Bank of Canada’s GBPP

on the GoC bond yield curve. Two additional potential channels exist for central bank

asset purchases to affect long-term interest rates. For one, Gagnon et al. (2011), Krishna-

murthy and Vissing-Jorgensen (2011), and Joyce et al. (2011), among others, have sug-

gested a market functioning/liquidity channel through which central bank asset purchases

could affect bond risk premia. In this case, central bank purchases can enhance market

functioning by reducing the liquidity premia on bonds demanded by market participants,

thus making it easier to sell bonds. This channel was likely particularly important during

the initial phase of the pandemic. On the other hand, as noted by Bauer and Rudebusch

(2014), among others, the signalling channel recognizes that asset purchases contain news

about future monetary policy. Therefore, the announcement of an asset purchase program

can lead market participants to revise their expectations of future short-term rates, thus
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affecting long-term interest rates. Both channels should put additional downward pres-

sure on long-term interest rates. Therefore, our estimates of the portfolio-balance effects

of the Bank of Canada’s GBPP could be viewed as a lower bound on the overall effects

of this program on the Canadian yield curve.

Related literature. Our work complements a growing literature on evaluating the

Bank of Canada’s response to the COVID-19 pandemic. Arora et al. (2021) analyze

intraday movements in GoC bond yields in the hour after the Bank of Canada first

announced the GBPP on March 27, 2020, at 9 a.m. They find that the announcement of

the GBPP had a strong and immediate impact, with 10-year benchmark GoC bond yields

declining by about 10 basis points (bps) immediately after the announcement. Azizova et

al. (2024), using an event study to evaluate the impact of the GBPP program, find that

the GBPP had an announcement effect on long-term government bond yields of a decline

of 10 and 20 bps. Further, since these announcements do not capture that there was some

expectation that the Bank of Canada would purchase GoC bonds even before the GBPP

was announced, they perform a back-of-the-envelope counterfactual and estimate that it

may have had an impact of almost 80 bps on 10-year bond yields, an estimate that is

in line with our results. Finally, using a macrofinance model based on Zhang’s (2021),

they map the effect of a decline in 10-year bond yields by almost 80 bps into impacts on

GDP and inflation to find a peak impact of about 3% on real GDP and 1.8 annualized

percentage points on inflation (although they report a lot of uncertainty around the size

of this impact).

Tombe (2023) presents a historical perspective of the Bank of Canada’s balance sheet,

revenue streams, and expenditures, including the effects of the Bank of Canada’s response

to the COVID-19 pandemic. In particular, he finds that the overall effect of the Bank

of Canada’s purchases of GoC bonds during the pandemic lowered the average time to

maturity of federal government debt by approximately 1.5 years. Our results are comple-
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mentary to Tombe (2023). First, we can isolate the effect of the GBPP by differentiating

between the Bank of Canada’s holdings of GoC bonds due to standard operations (i.e.,

bond purchases to offset government deposits and the issuance of banknotes) and the

Bank of Canada’s holdings of bond purchases under the GBPP. Second, we focus on the

weighted average maturity reduction implied by the GBPP rather than the reduction in

the average time to maturity of the federal government since focusing on weighted aver-

age maturity provides a better measure of the interest-rate risk removed by the Bank of

Canada from a theoretical perspective.

Paper outline. In Section 2, we quantify the reduction in interest-rate risk implied by

the Bank of Canada’s GBPP. Section 3 presents our portfolio-balance model of the term

structure of interest rates. In Section 4, we quantitatively assess the importance of the

portfolio-balance effects of the Bank of Canada’s GBPP on the Canadian yield curve.

Section 5 concludes.

2 The Bank of Canada’s Government Bond Purchase

Program

The GBPP, introduced by the Bank of Canada on March 27, 2020, aimed to mitigate

severe dislocations in the GoC bond market precipitated by the COVID-19 pandemic.

The program committed to purchasing at least $5 billion in GoC bonds weekly, encom-

passing all maturities across the yield curve, and pledged to continue these purchases

until economic recovery was well underway. This intervention was initially designed to

restore liquidity and ensure the proper functioning of the government bond market, which

a widespread surge in the demand for cash had significantly disrupted.

As market conditions stabilized by mid-2020, the GBPP transitioned from focusing

on restoring market functioning to serving as a QE tool to provide additional monetary

stimulus. This shift redirected the program’s objective toward exerting downward pressure
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on long-term interest rates in the economy to bolster economic growth. By absorbing a

significant volume of government bonds, the Bank of Canada effectively reduced the supply

of GoC bonds available to private investors, lowering their exposure to interest-rate risk

and thus putting downward pressure on long-term interest rates.

In this section, we quantify the reduction in interest-rate risk implied by the Bank of

Canada’s GBPP by calculating the weighted average maturity of the GoC’s marketable

debt, with and without considering the consolidation of the Bank of Canada’s holdings

of GoC debt purchased under the GBPP.

2.1 Data

To quantify the reduction in the amount of interest rate risk borne by private investors

due to the Bank of Canada’s GBPP, we collect data on bond characteristics (issue date,

coupon rate, maturity date, and face value outstanding) on every GoC bond outstanding

between January 2018 and March 2024.

We also collect data on the Bank of Canada holdings of each of these bonds. Im-

portantly, in addition to the bond purchases under the GBPP, the Bank of Canada also

acquires GoC bonds “under normal course,” primarily through non-competitive bids at

government securities auctions, to offset government deposits and the issuance of ban-

knotes, which represent liabilities on its balance sheet.5 For this reason, we distinguish in

our data set between holdings of GoC bonds acquired under normal course in the primary

market and holdings due to the GBPP acquired in the secondary market.

2.2 The maturity structure of GoC debt

Following Doepke and Schneider (2006) and Greenwood and Vayanos (2014), we construct

the maturity structure of government debt at a given date by (i) breaking the stream of

5As laid out in the Bank of Canada’s “Statement of Policy Governing the Acquisition and
Management of Financial Assets” (https://www.bankofcanada.ca/2021/09/statement-policy-governing-
acquisition-management-financial-assets-bank-canada-balance-sheet/), asset purchases conducted under
normal course are governed by three key principles: prudence, transparency, and neutrality.
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each bond’s cash flows into coupon and principal payments and (ii) aggregating cash flows

across individual bonds. In this way, total payments due n quarters from date t are

D
(n)
t = C

(n)
t + PR

(n)
t =

∑
i

C
(n)
i,t +

∑
i

PR
(n)
i,t , (2.1)

where C
(n)
t is the total coupon payment, derived by summing over the cash flows related

to the coupon bond payment C
(n)
i,t that each bond i is due to make n quarters from date

t. In contrast, PR
(n)
t is the total principal payment, derived by summing over bonds

the principal payments PR
(n)
i,t that each bond i is due to make n quarters from date t.

Specifically, we compute the maturity structure of the GoC debt up to 120 quarters (30

years).6

Similarly, we construct an equivalent maturity structure for the GoC debt where we

consolidate the Bank of Canada holdings of GoC bonds due to its purchases under normal

course, and a maturity structure of the GoC debt where we consolidate the Bank of

Canada total holdings of GoC bonds. In both cases, we include the liabilities issued by

the Bank of Canada (i.e., cash and settlement balances) to finance the purchase of these

GoC bonds when consolidating the Bank of Canada holdings into the maturity structure

of the GoC debt. We denote the total payments due n quarters from date t from the

bonds in the Bank of Canada holdings due to its purchases under normal course by S
(n)
t ,

while the payments related to all the Bank of Canada bond holdings is denoted by H
(n)
t .

Note that the difference between H
(n)
t and S

(n)
t captures the maturity structure of the

Bank of Canada holdings of GoC bonds due to the GBPP purchases.

Motivated by the work of Greenwood and Vayanos (2014) and Vayanos and Vila

(2021), who show that bond supply shocks can affect the compensation demanded by

fixed-income investors if they change the amount of interest rate risk that they are exposed

to, we summarize the maturity structure of GoC debt at a given date by computing the

6As in Greenwood and Vayanos (2014), we aggregate any payments beyond 120 quarters (30 years)
in the 120-quarter bucket.
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weighted average maturity of the outstanding GoC debt:

WAM
(GoC total)
t =

∑N=120
n=0 D

(n)
t e−ny

(n)
t n∑N=120

n=0 D
(n)
t e−ny

(n)
t

, (2.2)

where y
(n)
t is the yield on n-quarter nominal zero-coupon bonds. Note that equation (2.2)

can be expressed as

WAM
(GoC total)
t =

N=120∑
n=0

ω
(n)
t n, (2.3)

where the weights ω
(n)
t satisfy

ω
(n)
t =

D
(n)
t e−ny

(n)
t∑N=120

n=0 D
(n)
t e−ny

(n)
t

. (2.4)

Note that, by weighting the maturity structure of the stream of future payments by the

GoC by the present value of each cash flow, the weighted average maturity coincides with

the Macaulay duration of the outstanding GoC debt.

Similarly, we compute the weighted average maturity of the GoC bond outstanding

with the consolidation of the Bank of Canada’s holdings of GoC bonds acquired under

normal course,7

WAM
(Consolidated BoC normal)
t =

∑N=120
n=0

[
D

(n)
t − S

(n)
t

]
e−ny

(n)
t n∑N=120

n=0 D
(n)
t e−ny

(n)
t

, (2.5)

and the weighted average maturity of the GoC bond outstanding with the consolidation

of the Bank of Canada’s total holdings of GoC bonds,

WAM
(Consolidated BoC holdings)
t =

∑N=120
n=0

[
D

(n)
t −H

(n)
t

]
e−ny

(n)
t n∑N=120

n=0 D
(n)
t e−ny

(n)
t

. (2.6)

7Note that the denominator in the definitions of the weighted average maturity of the GoC bond
outstanding with the consolidation of the Bank of Canada’s holdings of GoC bonds acquired under
normal course and the total Bank of Canada holdings of GoC bonds (equations 2.5 and 2.6, respectively)
remain unchanged with respect to the definition of the weighted average maturity of the GoC total bond
outstanding (equation 2.2). This is because, under the GBPP, the Bank of Canada is swapping long-
term GoC bonds with liabilities with (essentially) zero duration (either currency or settlement balances).
For this reason, the present value of the Bank of Canada’s total holdings of GoC bonds, which is given

by
∑N=120

n=0 H
(n)
t e−ny

(n)
t (which represents the zero-duration liabilities that the Bank of Canada has

issued to the public and that, therefore, does not appear in the numerator of the consolidated weighted
average maturity), needs to be added to the present value of the GoC bond outstanding net of the

Bank of Canada’s total holdings of GoC bonds, which is
∑N=120

n=0

[
D

(n)
t −H

(n)
t

]
e−ny

(n)
t , resulting in a

denominator that is equal to
∑N=120

n=0 D
(n)
t e−ny

(n)
t .
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These measures of the weighted average maturity of the outstanding GoC debt can

move around due to changes in the yield curve (even if the maturity structure of the

outstanding debt does not change). For this reason, we follow Greenwood et al. (2016)

and compute our weighted average maturity measures based on a constant term structure

of interest rates (in this case, the daily average term structure of interest rates from

January 2018 to March 2024) to isolate the changes in the weighted average maturity of

the outstanding GoC debt due to changes in the Bank of Canada holdings of GoC bonds

from those due to changes in the yield curve.

In Figure 1, we display these three measures of the average maturity of the outstanding

GoC marketable debt. The thick solid line represents the weighted average maturity

of the outstanding GoC marketable debt. The thin solid line represents the average

maturity of the outstanding GoC marketable debt that consolidates the Bank of Canada

holdings of GoC debt due to the Bank of Canada’s purchases of GoC bonds under normal

course. Finally, the thin dashed line displays the average maturity of the outstanding

GoC marketable debt that consolidates the Bank’s total holdings of GoC debt. We note,

again, that the difference between the weighted average maturity of the outstanding GoC

debt consolidated with the Bank of Canada’s holdings due to its normal course operations

(thin solid line) and the total holdings isolates the effect of the GBPP (thin dashed line).

From January 2018 to early 2020, the weighted average maturity of the GoC outstand-

ing debt remained stable at around 5.5 years. This period of stability is consistent with

the GoC maintaining a consistent mix of short-term and long-term debt, balancing its

debt maturity profile to effectively manage refinancing risks and low-cost funding needs.

The Bank of Canada purchases of GoC bonds conducted under normal course lowered the

average maturity of the GoC investor portfolio by approximately 0.6 years. The consis-

tent gap between both lines underscores the regular and predictable impact of the BoC’s

normal course operations on the duration of GoC debt during the pre-pandemic period.
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With the onset of the pandemic in March 2020, the weighted average maturity of

the outstanding GoC debt fell by approximately 1 year from the pre-pandemic average

of approximately 5 years, primarily due to the GoC’s increased issuance of short-term

Treasury Bills to rapidly raise liquidity and address immediate fiscal needs during the

crisis. At this time, the Bank of Canada also increased the purchases of GoC Treasury

Bills at auctions in the primary market to support a liquid and well-functioning short-term

GoC borrowing.8 As a result, the maturity removal due to the Bank of Canada’s purchases

of GoC bonds conducted under normal course remained close to their pre-pandemic levels

(0.5 vs. 0.6 years) compared to the pre-pandemic average maturity of the outstanding

GoC debt of 5.5 years.

As the pandemic progressed, the weighted average maturity of outstanding GoC debt

gradually began to return to its pre-pandemic levels of around 5 years, reflecting the

government’s gradual shift toward issuing longer-term bonds once market conditions sta-

bilized and the initial liquidity crunch eased. Similarly, the Bank of Canada’s extraordi-

nary actions pivoted from focusing on restoring market functioning to serving as a QE

tool to provide additional monetary stimulus while the policy rate was constrained by the

effective lower bound. Effectively, as the Bank of Canada ramped up its GBPP purchases

starting in March 2020, the program significantly impacted the interest rate risk that

private investors were exposed to.9 By November 2021, coinciding with the peak of GoC

bond holdings under the GBPP, the GBPP had lowered the weighted average maturity of

the portfolio of the GoC investor by about 1.4 years. For comparison, the pre-pandemic

LSAP programs implemented by the Fed had lowered the average maturity of the U.S.

Treasury debt by 1.7 years by the end of their QE3 program (see Greenwood et al., 2016).

As the Bank of Canada started the process to normalize its balance sheet by first

8We note that these incremental purchases of GoC Treasury Bills from April 21, 2020, to November
24, 2020, are included in the Bank of Canada’s holdings of GoC bonds acquired under normal course.

9Similarly, the Bank of Canada started to return to a more normal participation rate in the auction
purchases of GoC bonds for its normal course in July 2020 and halted the incremental purchases of GoC
Treasury Bills.
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stopping net new purchases of GoC bonds in October 2021, when it moved from QE to

the reinvestment phase, and then halting all purchases in April 2022, the GBPP maturity

removal started diminishing from the peak of 1.4 years. By the end of March 2024, the

impact of the GBPP on the average maturity of the GoC outstanding debt was still 0.87

years.10

We now present the details of a portfolio-balance model in the spirit of Greenwood

and Vayanos (2014) and Vayanos and Vila (2021), which we use to calibrate the effects

of lowering the weighted average maturity of the GoC marketable debt on the Canadian

yield curve.

3 A Portfolio-Balance Model

In this section, we introduce the portfolio-balance model that we will use to quantify the

portfolio-balance effects of the Bank of Canada GBPP. This model is a simplified version

of Diez de los Rios (2024), where further details can be found.

3.1 State variables

We assume that the state of the economy is described by a (M × 1) vector of latent state

variables (or pricing factors), xt. The dynamic evolution of the state variables under the

physical measure, P, is given by a Gaussian VAR(1) process:

xt+1 = Φx0 +Φxxxt + εx,t+1, (3.1)

where, to guarantee the pricing factors are stationary, the eigenvalues of Φxx lie inside

the unit circle in the complex plane. Further, let εx,t+1 ∼ iid N(0,Σxx), where Σxx is a

symmetric positive definite matrix with unique Cholesky decomposition given by Σ1/2
xx .

10In addition, the maturity removal due to the GoC purchases under normal course has been steadily
declining from 0.6 years in November 2021 to 0.4 years by March 2024, reflecting that the Bank of Canada
also halted purchases in the primary market (i.e., under normal course) in April 2022.
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3.2 Assets

Short-term nominal bond. Let B
(1)
t be the nominal price (i.e., in dollars) at time t

of a one-period zero-coupon nominal bond, b
(1)
t ≡ log[B

(1)
t ] be its log price, and rt = −b

(1)
t

be the short-term nominal interest rate in this economy, which we assume is affine in the

set of state variables:

rt = δx0 + δ′
xxt. (3.2)

Long-term nominal bonds. In addition to the one-period nominal bond, we further

assume that there is a set of n-period (default-free) nominal zero-coupon bonds with

maturities n = 2, . . . , N . Consistent with the notation for the one-period nominal bond,

we denote the nominal price (i.e., in dollars) at time t of an n-period nominal zero-coupon

bond that pays 1 dollar at date t + n by B
(n)
t , its log price by b

(n)
t ≡ logB

(n)
t , and its

(log) yield by y
(n)
t ≡ −b

(n)
t /n. Specifically, let the gross (nominal) return on the n-period

nominal zero-coupon bond be R
(n)
t+1 =

B
(n−1)
t+1

B
(n)
t

for n = 1, . . . , N , where B
(0)
t+1 = 1 given that

a nominal one-period zero-coupon bonds pays 1 dollar at date t+1. Importantly, nominal

long-term bonds are subject to interest rate risk because these assets suffer a capital loss

if short-term nominal interest rates rise unexpectedly.

The log return on the n-period nominal zero-coupon bond is given by r
(n)
t+1 ≡ log

[
R

(n)
t+1

]
=

b
(n−1)
t+1 − b

(n)
t , for n = 1, . . . , N , while its log excess return over the short-term nominal

interest rate from time t to t+ 1 is

rx
(n)
t+1 = b

(n−1)
t+1 − b

(n)
t − rt, for n = 2, . . . , N. (3.3)

Taking expectations on equation 3.3 yields a difference equation that can be iterated

forward to obtain the following expression for the yield of the n-period nominal zero-

coupon bond:

y
(n)
t =

[
n−1∑
k=0

Et (rt+k)

]
︸ ︷︷ ︸

Expectations component

+

[
n−1∑
k=0

Et

(
rx

(n−k)
t+k+1

)]
︸ ︷︷ ︸

Term premium

. (3.4)
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The first term in equation 3.4 is the average path of expected future nominal short rates.

The second term is, on the other hand, a (nominal) term premium. Since rx
(n)
t+1 is the

log return from holding an n-period nominal zero-coupon bond in excess of investing in

the nominal one-period bond, we have that the term premium component captures the

(expected) additional return required by investors to hold the long-term nominal bond

(which is exposed to interest-rate risk) as opposed to holding the short-term nominal

bond (which is risk free). We advance that changes in the amount of interest-rate risk

that financial market participants are exposed to, and consequently the compensation

that they demand for bearing this risk, will affect bond yields by affecting the second

term in equation 3.4.

3.3 Arbitrageurs

As in Greenwood and Vayanos (2014), we assume that nominal bonds are issued by

a government and are traded by both (identical) arbitrageurs and other investors. We

assume that arbitrageurs choose a portfolio of nominal bonds that maximize their expected

utility over their nominal wealth. Specifically, we assume that arbitrageurs have power

utility with a (constant) coefficient of relative risk aversion γ. Therefore, the arbitrageurs’

portfolio choice problem can be expressed as

max{
d
(n)
t

}N

n=1

EtW
1−γ
t+1 − 1

1− γ
, (3.5)

where d
(n)
t is the portfolio weight in the nominal n-period zero-coupon bond and Wt+1

denotes the arbitrageurs’ wealth at time t+ 1.

The arbitrageurs’ wealth evolves across time according to the following budget con-

straint:

Wt+1

Wt

= R
(p)
t+1 =

N∑
n=2

d
(n)
t R

(n)
t+1 +

[
1−

N∑
n=2

d
(n)
t

]
R

(r)
t+1, (3.6)

where R
(p)
t+1 is the gross return on the arbitrageurs’ portfolio, and R

(r)
t+1 ≡ exp(rt) is the

gross return from investing in the short-term nominal bond. Note that the portfolio weight
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invested in the nominal one-period bond is given by d
(1)
t = 1−

∑N
n=2 d

(n)
t .

Following Campbell and Viceira (2001), we solve the arbitrageurs’ portfolio choice

problem by assuming that the gross return on the arbitrageurs’ portfolio, R
(p)
t+1, is con-

ditionally lognormal (an assumption that we verify below), which implies that the arbi-

trageurs’ wealth at time t+ 1 is conditionally lognormal as well. Specifically, taking logs

on both equations 3.5 and 3.6 and using the properties of a lognormal variable, we can

rewrite the arbitrageurs’ portfolio choice problem as

maxEtr
(p)
t+1 +

1

2
σ2
pt︸ ︷︷ ︸

logEt

[
R

(p)
t+1

]
− γσ2

pt, (3.7)

where r
(p)
t+1 ≡ log

[
R

(p)
t+1

]
, and σ2

pt = V art

[
r
(p)
t+1

]
is the conditional variance of the log

portfolio return.

To link the log returns on the underlying assets to the log return on the portfolio,

we follow Campbell and Viceira (2001) again. Specifically, using a second-order Taylor

approximation of the portfolio return in equation 3.6, we obtain that the log return of the

arbitrageurs’ portfolio in excess of the log return from investing in the nominal short-term

rate bond is

rx
(p)
t+1 ≡ log

[
R

(p)
t+1

R
(r)
t+1

]
≈ d′

trxt+1 +
1

2
d′
tσ

2
t −

1

2
d′
tΣtdt, (3.8)

with dt =
[
d
(2)
t , . . . , d

(N)
t

]
, rxt+1 =

[
rx

(1)
t , . . . , rx

(N)
t

]′
, Σt = V art(rxt+1), and σ2

t =

diag(Σt) =
[
σ2
2,t, . . . , σ

2
n,t

]
. Campbell and Viceira (2001) noted that this Taylor approxi-

mation is exact in continuous time, given that higher-order terms converge to zero over

shorter and shorter time intervals.

Substituting equation 3.8 into equation 3.7 and taking derivatives with respect to the

portfolio weights, dt, we arrive at the following first-order condition for the arbitrageurs’

portfolio choice problem:

Etrxt+1 +
1

2
σ2

t = γΣtdt (3.9)
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if expressed in matrix form and

Etrx
(n)
t+1 +

1

2
V art

[
rx

(n)
t+1

]
= γ

N∑
j=2

Covt

[
rx

(n)
t+1, rx

(j)
t+1

]
d
(j)
t for n = 2, . . . , N (3.10)

when specialized to the case of the excess return on the n-period zero-coupon bond.

Note that this solution is equivalent to the multiple-asset mean-variance solution once we

convert from log returns to simple returns. As in the case of the portfolio-balance models

of Greenwood and Vayanos (2014), Greenwood et al. (2018), and Vayanos and Vila (2021),

the arbitrageurs trade off mean against variance in the portfolio return. However, in our

setup, we have that the relevant mean return for arbitrageurs with power utility is the

mean simple return (similar to the setup in Campbell and Viceira, 2001).

3.4 Bond supply

We model the net supply of nominal long-term bonds available to the arbitrageurs as an

affine function of the state variables, xt. Specifically, we assume that the value of the net

supply at time t of a nominal bond with maturity n available to the arbitrageur is given

by s
(n)
t Wt, where

s
(n)
t = s

(n)
x0 + s(n)

′

x xt, for n = 2, . . . , N. (3.11)

Importantly, our specification nests different cases, such as (i) a constant supply of nominal

bonds; (ii) the case that the net supply of nominal bonds available to the arbitrageurs

is exogenous, price-inelastic, and described by a one-factor model (see Greenwood and

Vayanos, 2014), and (iii) the case that there is a preferred-habitat sector with demand

functions that are linear and decreasing in the (log) price of the nominal bond (see Vayanos

and Vila, 2021).

3.5 Equilibrium

As in Greenwood and Vayanos (2014), Greenwood et al. (2018), and Vayanos and Vila

(2021), we solve for a rational expectations solution of the model. Specifically, we solve
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for the endogenous nominal bond price equilibrium process that is consistent with (i) the

nominal short rate given by equation 3.2 and (ii) equilibrium in the nominal bond market

(i.e., d
(n)
t = s

(n)
t for all n = 2, . . . , N).

Specifically, we conjecture that equilibrium log bond prices are affine functions of the

state variables, xt:

b
(n)
t = −b

(n)
x0 − b(n)′

x xt for n = 1, . . . , N. (3.12)

Consequently, we have that the zero-coupon bond yields will also be affine in the set state

variables:

y
(n)
t = a

(n)
x0 + a(n)′

x xt, (3.13)

with a
(n)
x0 = b

(n)
x0 /n and a

(n)
x = b

(n)
x /n.

3.5.1 Excess returns on nominal zero-coupon bonds

Substituting the guesses for the (log) bond prices in equation 3.12 into the expression

for the excess returns equations for the nominal zero-coupon bonds in equation 3.3, we

have that the log return from investing in the nominal n-period zero-coupon bond, for

n = 2, . . . , N , in excess of the nominal short-term rate satisfies:

rx
(n)
t+1 =

[
b
(n)
x0 − b

(n−1)
x0 − b(n−1)′

x Φx0 − δx0

]
+
[
b(n)′

x − b(n−1)′

x Φxx − δ′
x

]
xt − b(n−1)′

x εx,t+1.

(3.14)

Importantly, note that since εx,t+1 is conditionally normally distributed, the log returns

on the nominal bonds in excess of the real short-term interest rates are conditionally

normal as well (cf. equation 3.14). Since, conditional on the information available at time

t, the arbitrageurs’ log portfolio return is a linear combination of the log excess returns

on the nominal bonds (cf. equation 3.7), we have that the log portfolio return is also

conditionally normally distributed.

3.5.2 Arbitrageurs’ first-order condition

We now use the expression for the bond excess return in equation 3.14 to compute the

(co)variance terms in equation 3.10 and thus solve the arbitrageurs’ optimization problem:
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Lemma 1. The arbitrageurs’ first-order condition implies that

Etrx
(n)
t+1 +

1

2
σ2
n,t = −b(n−1)′

x λxt for n = 2, . . . , N, (3.15)

where

λx,t = γΣxx

N∑
j=2

[
−b(j−1)

x d
(j)
t

]
. (3.16)

Equation 3.15 implies that the expected excess return from investing in the nominal

bonds, corrected by a convexity term, is equal to the (inner) product of the sensitivity

of the excess returns on the nominal bonds, b
(n−1)
x , and a price of risk term, λx,t that

captures the expected excess return per unit of sensitivity demanded by arbitrageurs as

compensation for being exposed to the shocks, εx,t+1. Consistent with the absence of

arbitrage, this compensation per unit of factor sensitivity is the same for all nominal

bonds. Finally, we note that the price of risk λx,t depends on the overall sensitivity of

the arbitrageurs’ portfolio to that factor:
∑N

j=2

[
−b

(j−1)
x d

(j)
t

]
. Consequently, the riskier

the arbitrageurs’ portfolio is, the higher the compensation (per unit of factor sensitivity)

they demand for holding such a portfolio.

3.5.3 Solution of the model

Similar to the models in Greenwood and Vayanos (2014) and Vayanos and Vila (2021),

the assumption of the absence of arbitrage does not impose restrictions on the prices

of risk. Once more, we will follow these authors and determine the prices of risk that

are consistent with market clearing in the bond markets. Specifically, we have that, in

equilibrium,

d
(n)
t = s

(n)
t for n = 2, . . . , N. (3.17)

Substituting rx
(n)
t+1 from equation 3.14 and the market-clearing conditions in equation

3.17 into the first-order condition of the arbitrageurs’ portfolio choice problem in equation

3.15, we find a set of N affine equations in xt. Further, by setting the constant terms and
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linear terms in xt to zero, we can find a set of difference equations defining the equilibrium

bond loadings
{
b
(n)
x0 ,b

(n)′
x

}N

n=1
. We will collect the results in the next theorem.

Theorem 1. The equilibrium bond price loadings,
{
b
(n)
x0 ,b

(n)′
x

}N

n=1
, satisfy the following

set of difference equations:

b(n)′

x = b(n−1)′

x ΦQ
xx + δ′

x, (3.18)

b
(n)
x0 = b

(n−1)
x0 + b(n−1)′

x ΦQ
x0 −

1

2
b(n−1)′

x Σxxb
(n−1)
x + δx0, (3.19)

with initial conditions given by b
(1)
x0 = δx0, and b

(1)
x = δx, and where ΦQ

x0 and ΦQ
xx satisfy

ΦQ
x0 = Φx0 + γΣxx

N∑
j=2

b(j−1)
x s

(j)
x0 , (3.20)

ΦQ
xx = Φxx + γΣxx

N∑
j=2

b(j−1)
x s(j)

′

x , (3.21)

Equation 3.21 has a solution if γ is sufficiently close to zero.

Notice that the solution to the equilibrium bond loadings in equation 3.18 requires

solving a fixed-point problem. On one hand, we have that the nominal bond loadings{
b
(n)
x

}N

n=1
in equation 3.18 depend on ΦQ

xx. However, the matrix ΦQ
xx in equation 3.21

depends on the nominal bond loadings through the term
{
b
(n)
x

}N

n=1
. This happens be-

cause, when arbitrageurs are risk averse (γ ̸= 0), the equilibrium price of risk, λx,t,

depends on the overall sensitivity of the arbitrageurs’ portfolio to the state variables,∑N
j=2

[
−b

(j−1)
x s

(j)
t

]
, which depends on the bond factor loadings themselves.

To discuss the existence of a solution to this fixed-point problem in equation 3.21, we

note that when γ approaches zero, a continuity argument suggests that the mapping for

the fixed-point problem becomes a contraction as both sides of this equation converge to

Φxx when γ → 0. Therefore, applying the Banach contraction mapping theorem, we have

that equation 3.21 admits a unique solution when γ is sufficiently close to zero.

Similar to Hamilton and Wu (2012), who demonstrated that portfolio-balance models

might serve as a foundation for the affine price of risk specification within GDTSMs, we
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have that both equation 3.18 and equation 3.19 coincide with the standard zero-coupon

bond pricing recursions in a standard GDTSM in which the dynamic evolution of the state

variables under the risk-neutral measure, Q, is given by the following Gaussian VAR(1)

process:

xt+1 = ΦQ
x0 +ΦQ

xxxt + εQx,t+1, (3.22)

where εQx,t+1 ∼ iid N(0,Σxx).

In the next section, we exploit this equivalence between portfolio-balance models and

GDTSMs to calibrate our model and quantify the importance of the portfolio-balance

effects of the Bank of Canada’s GBPP on the Canadian yield curve.

4 Policy Analysis and Calibration

We now show how to analyze the effects of central bank bond purchase policies within

our portfolio-balance model. Specifically, we follow the approach outlined in Vayanos and

Vila (2021) and, consistent with the Bank of Canada purchases under the GBPP, assume

that central bank purchases only concern government bonds.

As in Vayanos and Vila (2021), we model central bank purchases of nominal bonds

as a decrease ∆s
(n)
x0 in the intercept of the (relative) amount of bonds with maturity

n supplied to the arbitrageurs at time t (see equation 3.11). Furthermore, we assume

that this increase (i) is unanticipated, (ii) takes place at time zero, (iii) can be well

approximated by a one-factor model, and (iv) reverts deterministically to zero at a rate

of ϕβ:

∆s
(n)
x0 = s

(n)
β ∆βϕt

β, for n = 1, . . . , N, (4.1)

where the coefficient s
(n)
β measures the sensitivity of the supply to changes in the (deter-

ministic) factor β.

The following proposition collects the impact of such an increase on bond prices.

Proposition 1. The impact on the nominal bond prices due to the change in the supply
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of government bonds given by equation 4.1 satisfies

∆b
(n)
t = −b

(n)
β ∆βϕt

β, (4.2)

where

b
(n)
β = b

(n−1)
β ϕβ + γb(n−1)′

x Σxx

N∑
j=1

b(j−1)
x s

(j)
β , (4.3)

where the recursion is initialized with b
(1)
β = 0.

Equation 4.3 allows us to quantitatively assess the importance of the portfolio-balance

effects of the Bank of Canada’s GBPP on nominal yields by proceeding as follows.

First, we exploit the relationship between portfolio-balance models and GDTSMs es-

tablished above to obtain estimates of Σxx and b
(n)
x for n = 1, . . . , N , by estimating a

three-factor GDTSM by maximum likelihood using the approach outlined in Joslin et al.

(2011).

Second, we assume that the persistence of the Bank of Canada’s government bond

purchases is similar to that of the Federal Reserve Board’s large-scale asset purchase

programs. This assumption implicitly captures that, at the time, the economic effects of

the pandemic were expected to last (at least) as long as the effects of the financial crisis of

2007–08. In particular, we follow King (2019) and set ϕβ = 0.9608 to match a half-life of

the quantitative easing shocks of approximately 4.5 years on average, as in Carpenter et

al. (2015). To check the robustness of our results, we also consider the following values,

ϕβ = 0.9753 (half-life of 6.9 years) and ϕβ = 0.9512 (half-life of 3.5 years), which coincide

with the persistence of the quantitative easing shocks used in Vayanos and Vila (2021).

Third, we assume that the sequence
{
s
(n)
β

}N

n=1
satisfies

s
(n)
β = 1− 2n

N + 1
. (4.4)

Since
∑N

n=1 s
(n)
β = 0, we have that this specification for s

(n)
β implies that central bank

bond purchases reduce the amount of long-term bonds and increase the amount of short-

term bonds in equal measures. That is, changes in β do not alter the total value of
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bonds available to the arbitrageurs but affect only the weighted average maturity of their

portfolio.11 Importantly, since only the weighted sum
∑N

j=1 b
(j−1)
x s

(j)
β enters in equation

4.3, the exact specification of the individual supply factor loadings, s
(n)
β , is not of first-

order importance for the pricing of bonds as long as it can capture the variation in the

weighted average maturity of the portfolio that the arbitrageur needs to hold (see King,

2019, for further discussion).

Specifically, equation 4.4 implies that the impact on the weighted average maturity,

∆WAMt, due to the change in the supply of government bonds given by equation 4.1 is

∆WAMt = −∆βϕt
β

N∑
j=1

js
(j)
β . (4.5)

We thus calibrate ∆β to ensure that the effect at time zero of the supply shock in equation

4.1 decreases the weighted average maturity of the portfolio of bonds that arbitrageurs

are required to hold by 1.4 years to match the decline in the weighted average maturity

of the GoC debt outstanding resulting from the Bank of Canada’s GBPP, as described in

Section 2 above.

Finally, we set the arbitrageurs’ relative risk aversion coefficient to γ = 20, which, as

shown in Diez de los Rios (2024), is needed for portfolio-balance models to match the

estimated impacts of the Federal Reserve’s pre-pandemic LSAP announcements.12

We now discuss in more detail the estimation of the GDSTM underlying the calibration

of our portfolio-balance model.

11This specification for s
(n)
β can be viewed as the discrete-time version of the functional forms for the

sensitivity of the bond supply to the supply factor in Greenwood et al. (2015) and King (2019).
12Specifically, Diez de los Rios (2024) follows Greenwood et al. (2015) in assuming that the total price

impact on 10-year yields for all the Federal Reserve’s pre-pandemic LSAP announcements is 1.50%, an
assumption that can be justified by (i) the fact that the cumulative reduction of 10-year bond equivalents
available to investors due to the LSAP programs implemented between late 2008 and mid-2014 was
roughly $3 trillion (see Greenwood et al., 2016) and (ii) the estimate that an LSAP announcement of
a $500 billion purchase of 10-year bond equivalents reduces 10-year yields by 25 bps (Williams, 2014).
Therefore, the author calibrates the value of γ such that the effect of a 1.7-year decrease in the weighted
average maturity of the portfolio of U.S. Treasury government bonds (i.e., the duration removed by the
Fed’s pre-pandemic LSAP programs) is 1.50%, which yields γ = 20.
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4.1 Estimation of GDTSM

To calibrate our model, we start by estimating an M = 3 factor GDTSM by maximum

likelihood (ML) using the approach of Joslin et al. (2011). Importantly, we follow these

authors in adopting their canonical specification to guarantee the identification of the

model by assuming that (i) δx0 = 0; (ii) δx = 1M , where 1M is (M × 1) vector of ones;

(iii) ΦQ
x0,1 = kQ

∞ and ΦQ
x0,j = 0 for j = 2, . . . ,M ; and (iv) ΦQ

xx is a diagonal matrix

whose non-zero elements are collected in the vector ϕQ
x . Specific details on the estimation

approach can be found in the appendix.

Our data set consists of end-of-quarter observations from March 1986 (1986Q1) to

December 2023 (2023Q4) of Canadian zero-coupon bond yields for maturities of three

and six months and one, two, three, five, seven, and ten years, obtained from the Bank

of Canada website.

Table 1 summarizes the results from the ML estimation of the GDTSM. In panel a,

we present the results of estimating the VAR dynamics for the state variables in equa-

tion 3.1. We note that most of the parameters describing the physical dynamics of the

factors are statistically different from zero, and the fact that this is the case for most

of the off-diagonal elements of Φxx and Σ1/2
xx suggests the importance of modelling the

interdependencies and feedback mechanisms between different factors that influence the

term structure of interest rates.

Panel b presents estimates of the parameters driving the dynamics of the state variables

under the risk-neutral measure and inflation. In line with previous results in the literature,

the dynamics of the state variables under the risk-neutral measure are more persistent

than under the physical measure, in that the eigenvalues of ΦQ
xx, captured by the diagonal

elements of this matrix, are larger than the eigenvalues of Φxx. The largest eigenvalue

of ΦQ
xx is very close to 1 (0.9946), a feature needed to replicate the level factor that

characterizes the term structure of GoC bond yields. The diagonal elements of ΦQ
xx are
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all very precisely estimated due to the cross-equation restrictions imposed by the no-

arbitrage conditions on the cross-section of interest rates. Finally, we note that we fit the

cross-section of bond yields with a root mean square pricing error (RMSPE) of less than

10 bps.

4.2 Policy analysis

Figure 2 shows the effect of a decrease in the weighted average maturity of GoC debt by 1.4

years on the nominal yield curve at time zero for three different values of the persistence

of the QE shock. Under the baseline case (QE shock with a half-life of 4.5 years), our

model suggests that the portfolio-balance effects of the Bank of Canada’s GBPP on the

10-year yield were 84 basis points.

We find that the portfolio-balance effects of a QE shock increase in the bond’s maturity

in that these effects are more pronounced on longer-term yields: Longer-term bond prices

are more sensitive to changes in interest rates, so investors require greater compensation

for holding these bonds. For example, the portfolio-balance effects of the Bank of Canada’s

GBPP on the two-year yield were 20 basis points. In comparison, the effects on the five-

year and 10-year yields were 52 and 84 basis points, respectively.

Interestingly, this effect is nonlinear because investors are forward-looking and antici-

pate that since the QE shock is temporary, its effects will wane over the life of the bond.

Consequently, they require less additional compensation for holding bonds with increasing

maturities.

As mentioned above, we also check the robustness of our results to different values of

the persistence of the QE shock by also analyzing the effects of the GBPP on Canadian

yields for the two values of the persistence of the QE program used in the calibration

exercise in Vayanos and Vila (2021). In this case, we find a more persistent program

(half-life of 6.9 years) increases the impact on the 10-year (five-year) yield to 98 (56)

basis points, while a less persistent program (half-life of 3.5 years) reduces the impact
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of the GBPP on the 10-year (five-year) yield to 77 (50) basis points. Importantly, as

the persistence of the QE shock increases, the relationship between the portfolio-balance

effect on yields and the bond’s maturity becomes more linear.

Finally, to provide a sense of the persistence of the effects of the Bank of Canada’s

GBPP on Canadian yields, we also compute the effect of the 0.85-year reduction in the

average maturity on the outstanding GoC debt, which corresponds to the average maturity

reduction due to the Bank of Canada’s holdings of GoC debt purchased under the GBPP

as of the end of March 2024. In this case, our model suggests that the portfolio-balance

impact of a 0.85-year reduction in the average maturity of the outstanding GoC debt is 51

(32) basis points on the 10-year (five-year) yield (approximately 60% of the peak impact).

5 Final remarks

We propose a novel dynamic portfolio-balance model of the term structure of interest

for Canada to evaluate the portfolio-balance effects of the Bank of Canada’s Government

Bond Purchase Program.

Specifically, we quantify the reduction in interest-rate risk implied by the Bank of

Canada’s GBPP by calculating the weighted average maturity of the GoC’s marketable

debt, with and without considering the consolidation of the Bank of Canada’s holdings

of GoC debt purchased under the GBPP. Our calculations suggest that, at its peak in

November 2021, the GBPP had lowered the weighted average maturity of the GoC in-

vestor’s portfolio by about 1.4 years (or 5.8 quarters). Further, by mapping the effect of

removing 1.4 years of maturity from the GoC debt market, our model suggests that the

Bank of Canada’s GBPP successfully put downward pressure on Canadian longer-term

bond yields by reducing the term premium component of Canadian 10-year (five-year)

zero-coupon yields by 84 (52) basis points.

Our estimates of the GBPP’s portfolio-balance effects are based on a closed-economy
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model. However, as noted by Kabaca (2016) and Diez de los Rios and Shamloo (2017),

the transmission of QE shock may be different in small open economies such as Canada.

For this reason, it would be interesting to extend our framework to let arbitrageurs invest

in bonds denominated in different currencies. Along these lines, Greenwood et al. (2023)

and Gourinchas et al. (2024) present two-country portfolio-balance models of the term

structure of interest rates that could be used to explore the portfolio-balance effects of

QE shocks in small open economies. We leave such an exercise for further research.
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Appendix

A Proofs

A.1 Proof of Theorem 1

Note that equation 3.14 implies that the conditional expectation of the log return from

investing in the nominal n-period zero-coupon bond in excess of the nominal short-term

rate satisfies

Etrx
(n)
t+1 =

[
b
(n)
x0 − b

(n−1)
x0 − b(n−1)′

x Φx0 − δx0

]
+
[
b(n)′

x − b(n−1)′

x Φxx − δ′
x

]
xt, (A.1)

while the conditional covariance between the excess returns from investing in two nominal

bonds with different maturities n and j is given by

Covt

[
rx

(n)
t+1, rx

(j)
t+1

]
= b(n−1)′

x Σxxb
(j−1)
x . (A.2)

Consequently, we have that the left-hand side (LHS) of the arbitrageurs’ FOC in equation

3.10 is

Etrx
(n)
t+1 +

1

2
V art

[
rx

(n)
t+1

]
=

[
b
(n)
x0 − b

(n−1)
x0 − b(n−1)′

x Φx0 − δx0

]
+

1

2
b(n−1)′

x Σxxb
(n−1)
x

+
[
b(n)′

x − b(n−1)′

x Φxx − δ′
x

]
xt.

(A.3)

On the other hand, the right-hand side (RHS) of equation 3.10 evaluated at the bond

market-clearing conditions in equation 3.17 is equal to

γ

N∑
j=2

Covt

[
rx

(n)
t+1, rx

(j)
t+1

]
s
(j)
t = γb(n−1)′

x Σxx

N∑
j=2

b(j−1)
x

[
s
(j)
x0 + s(j)

′

x xt

]
. (A.4)

Collecting terms for xt in equation A.3 and matching coefficients with equation A.4,

we arrive at the following recursions for the loadings of the equilibrium (log) prices of the

nominal bonds:

b(n)′

x = b(n−1)′

x ΦQ
xx + δ′

x, (A.5)

where ΦQ
xx = Φxx + γΣxx

∑N
j=2 b

(j−1)
x s

(j)′
x , as defined in equation 3.21 in the main text.
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Similarly, by collecting and matching terms for the constant on both equation A.3 and

equation A.4, we arrive at the following recursion for the constant of the equilibrium (log)

prices of the nominal bonds:

b
(n)
x0 = b

(n−1)
x0 + b(n−1)′

x ΦQ
x0 −

1

2
b(n−1)′

x Σxxb
(n−1)
x + δx0, (A.6)

where ΦQ
x0 = Φx0 + γΣxx

∑N
j=2 b

(j−1)
x s

(j)
x0 , as defined in equation 3.20 in the main text.

A.2 Proof of Proposition 1

To consider the effects of an unanticipated change ∆s
(n)
x0 in the intercept of the supply of

the nominal n-period bond available to the arbitrageur, as given in equation 4.1, we start

by conjecturing that nominal bond prices are affine in the pricing factors xt and the term

∆βϕt
β:

b
(n)
t = −b

(n)
x0 − b(n)′

x xt − b
(n)
β ∆βϕt

β for n = 1, . . . , N. (A.7)

Following the same steps as in the proof of Theorem 1, we find that the coefficients for

the nominal bond price coefficients for the constant and xt remain unchanged with respect

to the general case. However, the nominal bond price coefficients for the QE factor satisfy

b
(n)
β = b

(n−1)
β ϕβ + γb(n−1)′

x Σxx

N∑
j=2

b(j−1)
x s

(n)
β . (A.8)

B Estimation details

We now provide additional details on the estimation of the GDTSM underlying our anal-

ysis of the portfolio-balance effects of the Bank of Canada’s GBPP.

Specifically, it is particularly useful to resort to its state-space representation of the

observed variables (i.e., the nominal bond yields). In a general state-space representation,

there is a transition equation that describes the dynamic evolution of the state factors

over time and a measurement equation that relates the observed data to the state factor.

In our case, the VAR dynamics in equation 3.1 can be interpreted as the transition
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equation, while the conjectures for the bond yields in equation 3.13, respectively, are the

measurement equations linking the observed data to the underlying state factor.

Let us denote ỹ
(n)
t as the observed yields, which we assume are subject to measurement

error. The vector yt =
[
y
(1)
t , ...y

(N)
t

]′
, on the other hand, comprises the model-implied

yields that stack the affine mapping in equation 3.13 for the maturities used in the esti-

mation of the model. Correspondingly, ỹt represents the vector of observed yields. Let

ηy,t be a zero-mean bond yield measurement error that is iid across time, independent of

the innovations to the pricing factor, εx,t, and that has a covariance matrix Σηyηy .

Given this notation, the measurement equations of the GDTSM state-space represen-

tation satisfy

ỹt = ax0 + axxt + ηy,t, (B.1)

where, given the canonical representation of our GDTSM adopted in the paper, ax is a

nonlinear function of ϕQ
x (the eigenvalues of ΦQ

xx), and ax0 and is a nonlinear function of

kQ
∞, ϕQ

x , and Σxx. The transition equation is, on the other hand, given by

xt+1 = Φx0 +Φxxxt + εx,t+1. (B.2)

Given the latent nature of the pricing factors, estimation could, in principle, be

achieved via Kalman filtering. Instead, we follow Joslin et al. (2011) in (i) working

with bond state variables that are linear combinations (i.e., portfolios) of the yields them-

selves, ft = P′ỹt, where P is a full-rank matrix of weights, and in (ii) further assuming

that ft is observed perfectly, i.e., P′ηy,t = 0.

These assumptions allow us to rotate our set of latent factors, xt, into a set of observed

factors and, in turn, factorize the joint likelihood function of the observed variables into the

marginal component of the (observed) linear combination of yields, ft, and the conditional

components corresponding to all the individual yields and inflation, given ft. Specifically,

we have that the vector of observable pricing factors, ft, is simply an affine (invariant)
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transformation of the original latent factors, xt:

ft = P′ỹt = P′ax0 + (P′ax)xt +P′ηy,t = c+Dxt, (B.3)

where c = P′ax0 and D = P′ax.

Consequently, by applying the properties of affine transformations for GDTSMs,13 we

have that our model is observationally equivalent to an alternative state-space model with

measurement equations given by

f⊥t = a⊥
f0 + a⊥

f ft + ηy,t, (B.4)

and transition equation given by

ft+1 = Φf0 +Φff ft + εf,t+1, (B.5)

where f⊥t = P′
⊥ỹt, P

′
⊥ is a basis for the orthogonal component of the row span of P′,

εf,t+1 ∼ iid N(0,Σff ), and:

Φff = DΦxxD
−1, (B.6)

Φf0 = (I−DΦxxD
−1)c+DΦx0, (B.7)

Σff = DΣxxD
′, (B.8)

a⊥
f = P′

⊥axD
−1, (B.9)

a⊥
f0 = P′

⊥
(
ax0 − axD

−1c
)
. (B.10)

Note that focusing on f⊥t = P′
⊥ỹt in the measurement equation of this (rotated) model

eliminates the redundant measurement equations for ft, given that these are perfectly

observed.

Importantly, and despite of this rotation into observable pricing factors, a⊥
f remains

a nonlinear function of ϕQ
x only, while a⊥

f0 is a nonlinear function of kQ
∞, ϕQ

x , and Σxx.

On the other hand, neither of the coefficients of the conditional mean of the (observable)

13See Dai and Singleton (2000) for further details.
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factors, Φf0 and Φff , enter into the functional forms of the cross-sectional bond yield

parameters. Given this separation between cross-sectional and physical dynamics, and

given that the VAR dynamics remain unrestricted, Joslin et al. (2011) propose a two-step

maximum likelihood estimator of the parameters of the GDTSM.

In the first step, Joslin et al. (2011) propose to estimate Φf0 and Φff by OLS given

that, since the VAR dynamics are unrestricted, OLS recovers the ML estimates of the

conditional mean parameters (Zellner, 1962).

Then, in the second step, Joslin et al. (2011) suggest estimating the remaining pa-

rameters of the model (kQ
∞, ϕQ

x , and Σxx) via numerical maximization of the likelihood

function, taking as given the estimates obtained in the first step.14

Finally, we recover the parameters driving the conditional mean of latent factors, Φx0

and Φxx, by undoing the affine transformations above.

14We further assume that Σηyηy = σ2
ηy

×P⊥P
′
⊥. This guarantees that P

′
⊥ΣηyηyP⊥ = 0 and allows us

to concentrate σ2
ηy

from the likelihood function through σ̂2
ηy

=
∑T

t=1

∑
n

[
ỹ
(n)
t − y

(n)
t

]2
/(T × (N −M))

where T is the length of the sample, N is the number of bonds used for the estimation, and M is the
number of factors.
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Table 1
ML estimates of GDTSM

Panel a: Physical dynamics of the state variables

100×Φx0 Φxx 100×Σ1/2
xx

0.0170 0.9882*** 0.0556** 0.0655 0.1357*** 0 0
(0.0187) (0.0144) (0.0345) (0.0411) (0.0079)

0.0691 -0.0735* 0.8758*** 0.1689 -0.0418 0.3759*** 0
(0.0531) (0.0409) (0.0750) (0.1154) (0.0314) (0.0427)

-0.0751 0.0710** 0.0184 0.6015*** -0.0474* -0.2926*** 0.1312***
(0.0458) (0.0354) (0.0654) (0.0983) (0.0265) (0.0450) (0.0077)

Panel b: Risk-neutral dynamics of the state variables

100×ΦQ
x0 ΦQ

xx

0.0189*** 0.9946*** 0 0
(0.0009) (0.0005)

0 0 0.8482*** 0
(0.0081)

0 0 0 0.6475***
(0.0202)

Maximum likelihood estimates for a sample period of 1986Q1 to 2023Q4. The dynamics are given by

xt+1 = Φx0+Φxxxt+εx,t+1, where εx,t+1 ∼ iidN(0,Σxx). Bond (log) prices satisfy b
(n)
t = −b

(n)
x0 −b

(n)′

x xt

where b
(n)′

x = b
(n−1)′

x ΦQ
xx + b

(1)′

x , b
(n)
x0 = b

(n−1)
x0 + b

(1)
x0 + b

(n−1)′

x ΦQ
x0 − 1

2b
(n−1)′

x Σxxb
(n−1)
x , and initial

conditions given by b
(1)
x = 1M and b

(1)
0 = 0. The eigenvalues of Φxx are 0.9735, 0.9072, and 0.5848.

Asymptotic standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ indicate a parameter estimate that is
statistically different from zero at the 1%, 5%, and 10% levels, respectively.



Figure 1
Weighted average maturity of the Government of Canada marketable debt
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Figure 2
Effect of the Bank of Canada’s GBPP on Canadian nominal yields
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Time-zero impact on the term structure of Canadian zero-coupon bond yields of an unanticipated quan-
titative easing shock that (i) decreases the WAM of the Government of Canada debt market by 1.4 years,
(ii) reverts deterministically to zero, (iii) when the relative risk aversion is γ = 20, and (iv) for different
values of the persistence of the QE shock, using the estimated parameters of the GDTSM from Table 1.
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