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Abstract 
The macroeconomy is a complicated dynamic system with significant uncertainties that make 
modelling difficult. Consequently, decision-makers consider multiple models that provide 
different predictions and policy recommendations and then synthesize that information into a 
policy decision. We use Bayesian predictive decision synthesis (BPDS) as a way formalize this 
monetary policy decision-making process. BPDS draws on recent developments in model 
combination and statistical decision theory that make it possible to combine models in a 
manner that incorporates decision goals, expectations and outcomes. We develop a BPDS 
procedure for a case study of monetary policy decision-making with an inflation-targeting 
central bank and compare the results against standard model-combination approaches. 

Topics: Econometric and statistical methods; Economic models; Monetary Policy 
JEL codes: C11, C32, C53 

Résumé 
La macroéconomie est un système dynamique complexe qui comporte de grandes 
incertitudes, ce qui rend difficile sa modélisation. Par conséquent, les décideurs prennent en 
compte de multiples modèles qui fournissent différentes prévisions et recommandations de 
politique, puis ils synthétisent cette information pour formuler une décision de politique 
monétaire. Nous utilisons la synthèse bayésienne des prévisions et des décisions pour 
formaliser ce processus de prise de décision sur la politique monétaire. Notre approche 
s’inspire des récentes avancées dans la combinaison de modèles et la théorie statistique de la 
décision, qui permet de combiner les modèles de manière à intégrer les objectifs, les attentes 
et les résultats relatifs aux décisions. Nous élaborons une procédure, fondée sur la synthèse 
de prévisions bayésienne, afin de réaliser une étude de cas portant sur la prise des décisions 
de politique monétaire par une banque centrale qui cible l’inflation et de comparer les 
résultats à ceux d’approches standard de combinaison de modèles. 

Sujets : Méthodes économétriques et statistiques ; Modèles économiques ; Politique monétaire 
Codes JEL : C11, C32, C53 



1 Introduction

Monetary policy makers are tasked with simple, but hard to achieve, objectives. A com-

mon objective is to target the future inflation rate, or other macroeconomic outcomes,

using the interest rates as the policy instrument. These decisions are made based on

uncertain information from many sources. In this paper, these sources are econometric

models that generate predictive distributions for the macroeconomic outcomes and the

policy instruments over multiple time periods. For a single model, it is straightforward to

select an optimal policy instrument using decision analysis and conditional forecasting.

Applying standard methods– such as Bayesian model averaging (BMA)– is one way to

address the issue of model uncertainty, as routine decision analysis can then be applied

to the weighted average as a single model. However, this traditional view ignores the re-

ality that a set of models may each individually recommend very different optimal policy

decisions. The question then arises as to how to synthesize this information and, poten-

tially, exploit it in the overall final decision process. This paper addresses and answers

this question.

There is an extensive Bayesian econometrics literature on model combination, but

discussion of the question that models are built for purposes– specific prediction and de-

cision goals– is very sparse. Traditional BMA analysis weights models according to purely

statistical model fit, and in time series explicitly and only scores 1-step ahead forecast

outcomes. Extensions and alternatives have arisen to define model weightings based on

aspects of past forecast performance with respect to specific forecast goals. Martin et al.

(2023) survey Bayesian forecasting in economics and finance and overviews various fore-

cast combination approaches, including some that are more explicitly concerned with

goal-focused prediction (e.g. Mitchell and Hall, 2005; Geweke and Amisano, 2011; Con-

flitti et al., 2015; Kapetanios et al., 2015; Loaiza-Maya et al., 2021; Chernis and Webley,
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2022; Aastveit et al., 2023; Bernaciak and Griffin, 2024). Lavine et al. (2021) provide ad-

ditional perspectives and put many of the earlier approaches in a foundational Bayesian

context, justifying model weights based on utilities in forecasting using historical model-

specific “scoring” of past forecast outcomes. The underlying theoretical justifications

come from Bayesian predictive synthesis (BPS) and the specific class of “mixture BPS”

models (McAlinn and West, 2019, section 2.2; Johnson and West, 2022). However, while

ultimate decision goals may be implicit in specific applications of model combination,

they are rarely if ever taken into account in the analysis and resulting decision-making.

This raises questions: A model that has fit or forecast specific outcomes well in the past

may be a good bet for use in resulting decision analysis– in our settings, to define optimal

decisions about values of policy instruments– but, there is no guarantee that this will be

so.

Our view is that models that have recommended optimal policy decisions that turn

out to be “good” should be more heavily weighted in looking ahead, just as past statistical

predictive performance is– and should be– generally positively weighted. The catch, of

course, is defining “good”; econometric models were and are not explicitly used and

scored in past policy decisions. The challenge is then to operationalize the concept of

“good decision” performance. For example, a vector autoregression (VAR) model can be

evaluated on forecast performance using a pseudo real-time forecasting exercise. But,

it is not clear how to evaluate such a model when used to advise policy decisions. We

can, however, use the VAR model at present to inform near-term decisions and explore

how it would have advised on decisions in the past. Evaluations can then compare such

analysis to decisions actually made by policy makers in the past (albeit recognizing that

past decisions of policy makers were not necessarily correct – rather, just the outcomes

of the amorphous reality of monetary policy-making).

Bayesian Predictive Decision Synthesis (BPDS–Tallman and West, 2023; Tallman, 2024)
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addresses these questions. As part of the theoretical framework of Bayesian predictive

synthesis (BPS–McAlinn and West, 2019; Johnson and West, 2022), BPDS explicitly al-

lows and encourages scoring of models based on decision analysis performance as well

as statistical predictive accuracy. In addition to reflecting historical outcomes of predic-

tions and decisions, BPDS critically also allows for differential model weighting based

on expected decision outcomes. This is a complete decision parallel to the proven use of

BPS models that incorporate outcome-dependent weights that modify BMA-like mixtures

to differentially favour models in different parts of the future outcome space for pure

forecasting. The latter concept was introduced by Kapetanios et al. (2015), whose em-

pirically inspired developments recognized, for example, that one model may be better

at predicting inflation when inflation is high and rising, while another model may be bet-

ter when inflation is low and stable. BPS defines the conceptual and theoretical Bayesian

bases and a broader methodological framework for this. BPDS goes further by integrating

both historical and expected decision outcomes; here we develop, extend, and exemplify

BPDS in our central macroeconomic policy context.

BPDS applies the broader Bayesian mixture model approach of BPS using defined

utility– or “score”–functions that relate to explicit decision goals. Importantly, this allows

for multiple objectives, i.e., multi-attribute decision analysis. For example, a purely pre-

dictive vector score function can allow for multiple forecast horizons (e.g. to produce in-

flation near a target for each of the next eight quarters) and/or multiple outcome criteria

(e.g. to separately reflect inflation targeting, interest rate smoothing, and stable growth

patterns over coming quarters), among others. For policy makers juggling multiple objec-

tives, this is a key feature; it is rather distinct from conventional approaches that adopt

single, scalar criteria for model weighting. For example, a forecast combination approach

might choose model weights based on the h−step ahead predictive likelihood for a single

choice of h, with BMA simply focused on h = 1, whereas BPDS can address multi-steps
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ahead in parallel, along with scoring of outcomes of decision goals that simultaneously

target several macroeconomic outcomes.

The opportunities for exploring such practically relevant questions, and the differ-

ences relative to traditional single-model and BMA-based analyses, are showcased in our

empirical studies. This involves an exploratory case study using US macroeconomic data

with multiple-objective score functions to define BPDS model weights, exemplifying the

use of BPDS in macroeconomic forecasting and advisory decision-making.

2 BPDS Framework

We present and discuss the structure of BPDS at a particular point in time, ignoring

the time dependency and relevance in the notation for clarity in communicating these

essentials. Practical implementation in time series is of course sequential, with models at

time t depending on all relevant historical data and information.

2.1 Mixture BPDS and Decision Setting

At a given time point, let y denote the q−dimensional outcome variable of interest (e.g.

inflation in each of the next q quarters) and x the vector of control/decision variables

(e.g., a target profile of central bank interest/base rates over the next q quarters). Each of

a set of J models Mj, j = 1:J, predicts the outcome y via a predictive density pj(y|x,Mj)

conditional on any considered decision x. The policy-maker responsible for ultimate de-

cisions adopts a general BPDS approach that implies the overall conditional (on x) pre-

dictive pdf of the form

f(y|x) ∝
∑
j=0:J

πj(x)αj(y|x)pj(y|x,Mj) (1)
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with the following ingredients.

BPDS model probabilities

The decision dependent model probabilities πj(x) can differentially weight models j over

the decision space of x, incorporating any prior information relevant to model weighting

based on past predictive model fit and decision outcomes, and now explicitly allowing

for adjustments based on a currently considered decision x. Dependence of πj(x) on x is

simply fundamental and critical in our policy setting.

BPDS calibration functions

The αj(y|x) are calibration functions that define outcome-dependence of model weights

over the outcome space of y for any chosen x. This defines the opportunity to increase

or decrease the model weights differentially over the outcome y space to address model-

specific biases and preferences and address questions of model-specific calibration more

generally. The BPDS mixture of eqn. (1) has the equivalent form

f(y|x) =
∑
j=0:J

π̃j(x)fj(y|x,Mj) (2)

where

fj(y|x,Mj) = αj(y|x)pj(y|x,Mj)/aj(x) and π̃j(x) = k(x)πj(x)aj(x) (3)

with normalizing terms k(x) and aj(x) explicitly dependent on x. This form shows how

the calibration functions αj(·|·) modify the initial mixture pdfs pj(·|·) → fj(·|·) with cor-

responding changes of mixture weights πj(x) → π̃j(x).

Note that the choice of relevant calibration functions αj(y|x) will, in any given appli-

cation, be partly dependent on characteristics of the model pdfs pj(y|x,Mj). In particu-
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lar, the expectation of each αj(y|x) under pj(y|x,Mj) must be finite in order that eqn. (1)

defines a valid BPDS density f(y|x). Unbounded score functions may sometimes apply,

but this point supports the use of bounded scores in general.

Baseline mixture component

The model index j = 0 explicitly allows for a baseline model component M0 in the mix-

ture pdf f(·|·) that can, among other things, address the ever-present issue of “model set

incompleteness” (Tallman and West, 2023, section 2.2.3). M0 can be chosen to produce

a pdf f0(·|·) that is over-dispersed relative to the mixture of the initial J models, so sup-

porting outcomes y that are unusual under the J models; the baseline is then a suitable

“fall back” model for times when the other models are forecasting poorly.

Initial mixture

The special case with each αj(y|x) = 1 defines the initial mixture with no BPDS calibra-

tion. We use p(y|x) in notion, i.e., p(y|x) =
∑

j=1:J πj(x)pj(y|x,Mj)

Special cases fix ideas. First, if πj(x) = πj with π0 = 0 are model probabilities based

on historical BMA analysis, and with αj(y|x) = 1, then eqn. (1) specialises to BMA. Thus

BMA analyses– with or without this decision dependence in model-specific forecasts– are

very special cases of BPDS. Second, again with πj(x) = πj, π0 = 0 and αj(y|x) = 1, the de-

cision maker has the freedom to specify the initial mixture probabilities πj in other ways

than with BMA. This includes using historical performance defined by scoring of past

forecast outcomes, justifying various approaches to goal-focused model weighting (e.g.

Lavine et al., 2021; Loaiza-Maya et al., 2021, and references therein) as special cases of

BPDS. Third, mixture BPS (McAlinn and West, 2019; Johnson and West, 2022) is a special

case in which models are combined with outcome-dependent weights. In these settings,

πj(x) = πj depends on past predictive performance, pj(y|x) = pj(y) and αj(y|x) = αj(y)
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define outcome-dependent modifications of model probabilities, but there is no deci-

sion context so no x−dependence. BPDS critically recognizes that the foundational BPS

theory allows explicit incorporation of decision goals– admitting the conditioning on x

throughout all components of eqn. (1)– to extend the foregoing analyses.

With predictions of (y|x) based on eqn. (2), the Bayesian decision maker acts to

identify the optimal decision x based on a chosen utility function U(y,x). This involves

numerical optimization to maximize the implied expected utility Ū(x) = Ef [U(y,x)|x]

over the decision space of x. The notation Ef [·|·] here explicitly represents expectation

with respect to the BPDS distribution, and we use Ep[·|·] to denote expectation under the

initial mixture.

2.2 Decision-dependent Scores for Calibration Functions

The key step in integrating decision outcomes into relative model weightings is to address

the question of how each Mj would inform decisions if used alone. Given the predictive

pdf pj(y|x,Mj) and a chosen, potentially model-specific utility function uj(y,x), acting

based only on Mj leads to the optimal decision xj that maximizes Epj [uj(y,x)|x] over

x. The decision maker has access to this set of model recommendations and is interested

in model combination to preferentially weight “good decision models” as well as mod-

els that generate good predictions. BPDS formalizes this with specified score functions

sj(y,xj), each being a k−vector of utilities that can be chosen to reflect both predic-

tive and decision goals. The use of multi-dimensional scores addresses multiple goals

simultaneously.

The Bayesian decision-theoretic development of Tallman and West (2023) generates

the resulting functional forms of the BPDS calibration functions as

αj(y,x) = exp{τ (x)′sj(y,xj)}, j = 0:J, (4)

7



where τ (x) is a k−vector with elements differentially weighting the multiple utility di-

mensions of the score vector. The reasoning and theory behind this key result is as

follows.

The initial mixture p(y|x) =
∑

j=1:J πj(x)pj(y|x,Mj) is the y−margin of the joint

distribution p(y,Mj|x) = πj(x)pj(y|x,Mj), (j = 1:J). Under this initial distribution

for any candidate decision x, and with score vectors sj(y,xj) defined and evaluated at

model-specific optimal decisions xj, the decision maker has initial expected score mp(x) =∑
j=0:J πj(x)mjp(x) where mjp(x) =

∫
y
sj(y,xj)pj(y|x,Mj)dy. Treating mp(x) as a bench-

mark to improve on in expectation, the BPDS theory enquires about distributions f(y,Mj|x)

that yield expected scores mf (x) ≥ mp(x) + ϵ(x) for some non-negative k−vector (with

at least one positive entry) ϵ(x); this may be chosen to depend on x, or may be a specified

constant “decision score improvement”. Given mf (x), the BPDS theory identifies a unique

f(·, ·|x) that minimizes the Küllback-Leibler (KL) divergence of p(·, ·|x) from f(·, ·|x) and

has expected score exactly mf (x). The theory is that of relaxed entropy tilting (Tallman

and West, 2022, 2023; West, 2023) and yields f(y,Mj|x) ∝ πj(x)αj(y,x)pj(y|x,Mj)

with calibration function precisely as in eqn. (4). The tilting vector τ (x) is implicitly

defined by the vector of k target score constraints Ef [sj(y,xj)|x] = mf (x).

BPDS takes the view that the initial mixture is based on past performance, and addi-

tional small changes in models and the way they are weighted based on their expected

performance may lead to better future decisions. It asks the question as to whether there

are perturbations of the mixture based on the initial model probabilities that can lead

to improved scores. Consider a stylized example with J = 2 models which in the past

have forecast equally well. Traditional model averaging methods focused only on past

forecasting experience– and BMA in particular– would confer equal weights in the combi-

nation. If, however, the models have different expected scores mjp(x), conferring slightly

more weight on the model expected to lead to a higher score makes sense. The entropic
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(or exponential) tilting theory is general. It is, of course, possible to tilt the initial joint

distribution to most targets, so long as they are technically achievable under the initial

distribution; but an overly ambitious target score will result in a tilted joint distribu-

tion that is empirically unreasonable. Hence we emphasize the importance of selecting

mf (x) that represents a “small ” improvement over the initial benchmark score mp(x).

This is bolstered by the assumption that the initial model probabilities reflect the empiri-

cal plausibility of models as well as any available information about historical predictive

and decision performance. Further, as we exemplify in the case study later, aspects of

the computational methodology for model fitting in the sequential time series setting

naturally inform on, and allow monitoring of, relevant choices of target expected scores.

2.3 BPDS Summary

This section has outlined the main ideas underlying BPDS and the key ingredients of the

theory and resulting technical machinery. Specifications of score and utility functions,

initial model probabilities, and target scores are all required for implementation and are,

of course, application specific. The following section develops full details in the context of

the macroeconomic decision-making application. In terms of computation, BPDS requires

the use of posterior simulation methods (i.e. draws from conditional predictive densities

from each model are required) as well as numerical optimization methods (i.e. to find xj

or the overall optimal decision x under the final BPDS analysis).

3 BPDS for Optimal Monetary Policy Decisions

The choice of data and models is inspired by Furlanetto et al. (2019). We use quarterly

macroeconomic and financial variables from 1973:Q1 to 2022:Q2 from the FRED-QD

database maintained by the Federal Reserve Bank of St. Louis. The data set includes
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GDP (the log of real GDP), prices (the log of the GDP deflator), the interest rate (the

shadow rate1 which we treat as the policy rate), investment (the ratio of real gross private

domestic investment to GDP), stock prices (log of the S&P500) and the spread (the spread

between BAA bonds and the Fed funds rate). Models are run over multiple years, and at

the end of each quarter produce forecasts– full predictive distributions in terms of Monte

Carlo samples– of outcomes of interest over the following k = 8 quarters, conditional

on candidate settings of the decision vector which is taken as the trajectory of interest

(shadow) rates over those quarters. Within-model decision analysis then delivers model-

specific optimal decisions about these rates.

3.1 Models, Forecasts and Model-Specific Decisions

We consider J = 2 models: M1 is a three-variable monetary policy VAR involving GDP,

prices, and the interest rate; M2 is the model of Furlanetto et al. (2019), a VAR with

the same variables as M1 plus investment, stock prices, and the spread. Following the

latter, we include 5 lags in the VARs. The two structural VARs are identified using the

sign restrictions from Table 1 of Furlanetto et al. (2019). In M1 these restrictions de-

fine supply, demand and monetary policy shocks. In M2 investment and financial shocks

are additionally identified. We condition on a given value of the policy rate and set the

monetary policy to be the driving shock. We do this by imposing restrictions on the set of

structural shocks underlying the conditional forecasts. Structural shocks other than the

monetary policy shock have zero means. We use the asymmetric conjugate prior of Chan

(2022), with the advantage that the marginal likelihoods for each can be easily calcu-

lated; prior hyperparameter choices are made to maximize the marginal likelihood as in

this referenced paper. At each quarter, multi-step ahead predictions are based on simula-

1This is the Federal Funds rate when the latter is positive but can go negative when it is at the zero
lower bound, taking into account unconventional monetary policy; see Wu and Xia (2016).
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tions using the precision-based sampler of Chan et al. (2023). Details on the conditional

forecast computations are summarized in Appendix B. In short, this generates pj(y, |x)

with zero-mean constraints on all shocks apart from the monetary policy variable. We

do not restrict the variance (i.e., ‘soft’ restrictions) such that we also have uncertainty

around the path of x. This can be thought of as conditional commitment– we allow

the possibility of x deviating from the proposed policy path with deviations informed by

historical uncertainty around forecasts of the interest rate outcomes.

This is a model setting in which the decision variable is also modeled – it is an outcome

variable. In the current quarter, x = (x1, . . . , xk)
′ is the k−vector of interest rate values

over the next k quarters, and y = (y1, . . . , yk)
′ the corresponding k−vector of inflation

rates. Whatever other variables are in the VAR model Mj, our interest focuses on the

implied pj(y|x,Mj) required for BPDS eqn. (1). This conditional predictive is used in

decision analysis with the same utility function for each model, namely uj(y,x) = U(y,x)

given by

U(y,x) = −
∑
h=1:k

{ρk−h(yh − y∗)2 + (xh − xh−1)
2} (5)

where ρ ∈ (0, 1) is a discount factor. This is a conventional quadratic function that

reflects the dual goals of inflation rate targeting and interest rate smoothing over the

next k = 8 periods. The y terms relates an inflation targeting mandate of y∗ = 2% over

the longer run, while the x terms encourage relatively constrained changes in quarter-

to-quarter interest rates (the latter being a “don’t rock the boat” consideration, as large

swings in interest rates can/will have otherwise unduly effects on the macro-economic

system). The terms involving the discount factor ρ represent the fact that monetary policy

works with a lag, so it is desirable to less heavily penalize deviations from the target at

shorter horizons h. With our two-year horizon (k = 8 quarters) our example analysis

below adopts ρ = 0.95. The model-specific optimal decision vector xj then maximizes
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Epj [U(y,x)|x] over x. Again, this analysis is repeated each quarter over the period of

time series of interest, producing rolling updates of the “currently optimal” projections

for interest rates over the coming 8 quarters.

3.2 BPDS Model Specification

The BPDS framework requires specification by the decision maker of a relevant class of

baseline pdfs p0(y|x), the model-specific vector score functions sj(y,x), the initial BPDS

model probabilities πj(x) as functions of candidate decisions x, and the target expected

scores mf (x) at any x. These are discussed in turn. In addition to customizing BPDS to

the specific application, this section highlights a number of methodological developments

relevant to other applications, particularly in: (a) the linkages of the πj(x) to x that are

relevant more generally when x is both an outcome to be forecast as well as a putative de-

cision variable (highlighted in Section 3.2.3 below); and (b) the relevance of dependence

structure among the elements of the vector score under the initial distribution p(y,Mj)

(highlighted in Section 3.2.4 below).

3.2.1 Baseline Distribution

To complete the main BPDS pdf in eqn. (1) requires the baseline p0(y|x). This is taken

as a multivariate T distribution with 10 degrees of freedom, using the location from

the initial mixture p(y|x) ignoring the baseline (i.e., with π0(x) = 0) and corresponding

variance of that mixture inflated by 4. This defines a relevant, tractable M0 that can

capture outcomes y that the two VAR models are not predicting well for any x under

consideration, and signal that to the decision maker.
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3.2.2 BPDS Score Functions

The considerations of inflation targeting and interest rate smoothing reflected in the

model-specific decision analysis in Section 3.1 are relevant to the choices of BPDS score

functions. Our example takes sj(y,x) = [sj1(y1, x1), . . . , sjk(yk, xk)]
′ with elements

sjh(yh, xh) = exp {−(yh − y∗)2/(2z2y)}+ exp {−(xh − xh−1)
2/(2z2x)}, h = 1:k, (6)

where y∗ = 2% is the inflation target and zy and zx are score bandwidth parameters. This

defines a class of bounded score functions, always relevant in decision analysis and here

ensuring that the entropically tilted BPDS pdf of eqn. (3) is always integrable. The score

bandwidths are set so that a certain deviation dy = (y − y∗)2 has a score of ε; given

a choice of ε we set zy = dy/
√
−2 log(ε). Similar considerations apply to choosing zx.

Our analyses use ε = 0.4, dy = 2, and dx = 1 to ensure the score function is dispersed

enough to accommodate modest changes in the Federal Funds rate while is more lenient

in deviations from the inflation target. Obvious modifications could incorporate horizon

h−specific inflation targets and differentially weight the two exponential terms, but this

form suffices for our main goals in this paper. Note also that, if inflation deviations from

target and interest rate changes are “small”, then sjh(yh, xh) is approximately quadratic

in |yh − y∗| and |xh − xh−1| for all h, a perhaps more familiar utility form.

3.2.3 Initial Model Probabilities

For clarity in the presentation in this section, we now make explicit the dependency

on time, so that the ingredients of the full BPDS predictive pdf in eqn. (1)– with the

exponential form of the calibration function of eqn. (4)– are now indexed by current
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time t, i.e.,

ft(yt|xt) ∝
∑
j=0:J

πtj(xt)eτt(xt)′stj(yt,xtj)ptj(yt|xt,Mj).

Bayesian model weighting based on historical predictive performance with respect to

define forecast goals, as developed in (Lavine et al., 2021), provides the starting point

for specification of the πtj(xt). The general form adopted is

πtj(xt) ∝ πtjptj(xt|Mj), j = 0:J, (7)

subject to summing to 1 over j = 0:J and with ingredients as follows.

Initial model probabilities

Traditional Bayesian analysis (e.g. West and Harrison, 1997, chapter 12) defines the

starting point. Here the time t initial model probabilities are based on standard sequen-

tial Bayesian updating from those at t − 1: That is, πtj ∝ πt−1,jptj(zt−1,j|Mj) where the

“marginal model likelihood” term ptj(zt−1,j|Mj) is the value of the 1-step ahead predic-

tive pdf under Mj at the observed values of the last period outcomes zt−1,j under that

model. In our applied setting, this zt−1,j includes time t − 1 outcome values of inflation

(y), interest rate (x), and other economic indicators modelled and forecast in Mj in our

setting. In general, these can differ across models, but in consideration for the initial

weights we restrict to variables common across models.

Then, BPDS allows the decision maker freedom to make alternative choices of the πtj,

and the goal and decision focus recommends modification of the standard BMA choice.

BMA, after all, only reweights models based on 1-step ahead predictive accuracy. Hence

we adopt two modifications, based on recent literature consonant with the goal foci.

First, we use simple power discounting of historically accrued support across models,

in which the time t− 1 to time t evolution is reflected in πtj ∝ πγ
t−1,jptj(zt−1,j|Mj) where
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γ is a discount factor in (0, 1], closer to 1 for most applications. This acts to discount his-

torically accrued support for model j at a per-time unit discount rate γ prior to updating

by the time t − 1 information. Going back at least to Smith (1979) and then, in a for-

mal dynamic model uncertainty context, West and Harrison (1989, chapter 12, p.445),

power-discounting has been shown to be of value in empirical studies in implicitly allow-

ing for time-variation in the predictive relevance of different models (e.g. Raftery et al.,

2010; Koop and Korobilis, 2013; Zhao et al., 2016). Our case study below uses γ = 0.95.

Second, reflecting the foci on specific predictive and decision goals, initial model

probabilities should also generally be modified based on the recent relative performance

of models with respect to the defined goals. This is the premise underlying the specific

variants of BPS in the setting of adaptive variable selection, or BPS-AVS, in Lavine et al.

(2021), and related developments in Loaiza-Maya et al. (2021), for example. This leads

to the immediate BPDS extension of these prior approaches in which the above reasoning

is extended to define

πtj ∝ πγ
t−1,jptj(zt−1,j|Mj)eτt−1(xt−1)′st−1,j(yt−1,xt−1,j).

Here the discounted Bayesian model probabilities are further updated with AVS-style

weights based on the the realized BPDS calibration function based on relative model

scores based on the actual decision outcomes at the last time period. As a result, models

are initially and naturally reweighted based on both predictive and decision outcome

performance at the last time period.

In our applied setting this means that, as a result, models achieving “good” recent

trajectories of interest rate smoothness, as well as relatively accurate forecasting perfor-

mance of realized inflation outcomes, will be rewarded with higher initial BPDS model

probabilities in looking forward to the next time point. And we note that the specification
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here can cut back to define special cases including BPS-AVS (by setting τt−1(xt−1) = 0),

and within that to traditional BMA (by setting γ = 1) for comparisons.

Finally, the inclusion in BPDS of the baseline model and its forecast densities leads to

a modification of these initial model probabilities to provide a non-zero value πt0 for the

baseline. We choose a fixed probability– in our analysis πt0 = 0.1 at each time point t–

and simply renormalize the πtj above over j = 1:J accordingly.

Informative Conditioning on xt

As noted earlier, in our setting the future values of decision variables are also considered

outcomes predicted under the models. The models each forecast the future evolution

of interest rates as part of the complex, dynamic macroeconomic system, whereas for

decisions we must condition on xt. This is reflected in the conditional (on xt) distribu-

tions ptj(yt|xt,Mj) in BPDS where xt is treated as known. The theoretical implication

for the BPDS model probabilities is the term ptj(xt|Mj) in eqn. (7)– this is the value of

the current marginal predictive pdf of the vector xt under Mj. Assuming the prior (to

time t) probabilities πtj are specified, this form arises directly via Bayes’ theorem; the act

of conditioning on xt is informative, and the implied update is, simply by Bayes’ theo-

rem, that in eqn. (7). Critically, this implies that candidate decision values that are not

well-supported under the joint distribution of a model are down-weighted. Conversely,

at any candidate decision vector xt, models that are more predictively supportive of the

decision xt will be relatively rewarded with higher values of resulting πtj(xt).

In other applications of BPDS the decision variables may be exogenous, i.e., control

variables that are to be chosen by the decision maker but that are not forecast jointly

with yt in the set of models. In such cases, it will be common to assume that the external

choice of xt is not informative, and then eqn. (7) results in decision-independent BPDS

probabilities πtj(xt) = πtj based only on historical data and information.
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3.2.4 BPDS Target Scores

The BPDS target expected score mf (x) = Ef [s(y,x)] represents a desired improvement

over the initial expected score mp(x) = Ep[s(y,x)]. In the multi-objective case the re-

sulting τ (x) that defines f(y|x) to satisfy this target expectation is sensitive to both the

relative scales and dependence of elements of s(y,x) under the initial mixture y ∼ p(y|x)

at any candidate decision x. As functions of y the elements of the random score vector

s(y,x) can be strongly correlated, leading to challenges in specifying relevant targets.

This can also complicate the calculation of the implied BPDS tilting vector τ (x)– the vec-

tor that is needed to satisfy mf (x) = Ef [s(y,x)] under the BPDS density of eqn. (1). We

address this by explicitly recognizing score dependencies and defining an approach that

explicitly incorporates dependence.

Some theoretical intuition is gained by considered cases of “small perturbations” in

which mf (x)−mp(x) has small elements. In this setting, entropic tilting theory in Tallman

and West (2022) yields the second-order approximation τ (x) ≈ Vp(x)
−1(mf (x)−mp(x))

where Vp(x) is the variance matrix of s(y,x) under the initial mixture p(y|x). This shows

that the implied tilting vector will be very sensitive to the initial score scales and depen-

dencies as reflected in Vp(x), and suggests a prime focus on a standardized score scale.

That is, define Cp(x) as the scaled eigenvector matrix such that Vp(x) = Cp(x)Cp(x)
′

and set the target score using mf (x) = mp(x)+Cp(x)ϵ(x) for a specified standardized ex-

pected score vector ϵ(x). The usual convention is taken in which the eigenvector columns

of Cp(x) are ordered according to decreasingly values of the corresponding eigenvalues,

so that the first column is “dominant”, and so forth. This provides insights into how to

practically define target scores related to the absolute standardized scale. As examples of

the two extremes, taking ϵ(x) = ϵ(x)1 for some scalar ϵ(x) represents targets deviating

from the initial expected score in equal amounts of ϵ(x) along each of the standardized
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eigendimensions. At the other extreme, and most relevant when there are strong score

dependencies, taking ϵ(x) = (ϵ(x), 0, . . . , 0)′ defines the resulting target mf (x) based on

the major, dominant eigen-dimension alone. The latter is a starting point in general and

is taken to define our BPDS case study below. In that setting, we choose ϵ(x) such that

min{(mf (x)/mp(x))} = 0.75 to define the maximum expected improved score in any

dimension.2 It is obviously straightforward to extend this methodology to define target

scores impacted by higher eigen-dimensions, though that is left for future applications.

3.3 BPDS Implementation and Optimal Decisions

The final step in BPDS is to couple the decision maker’s utility function with the BPDS

predictive equations (1,2) to define the optimal decisions from the model synthesis. The

decision maker can adopt any utility function but an initial neutral analysis will be based

on using the same form as usual in the model-specific decisions, the function U(y,x)

of eqn. (5). This is used in the example analysis to follow, with the aim of computing

x to maximize the implied expected utility function Ū(x). In the case study analysis

we compare decisions recommended by BPDS to those from each of the models and

to a traditional BMA-based analysis. On the latter, the BMA mixture uses model weights

proportional to the marginal likelihoods of the data which is common to all of the models

(which includes inflation, interest rate, and GDP) under each Mj. The BMA mixture

naturally involves only the pj(y|x) with no BPS/BPDS outcome-dependence, no notion

of a baseline model to address model-set incompleteness, and no regard for the decision-

focused use of the models. The foundational BPDS framework theoretically allows for

these critical considerations as fundamental to the broader subjective Bayesian decision-

analytic and goal-focused approach. Then, technically, BMA arises as a special case of the

2Additionally, due to the arbitrariness of signs of eigenvectors, we apply a ±1 multiplier to the first
column of Cp(x) so that the sum of elements are positive, ensuring the target score improves upon mp(x).
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BPDS analysis as earlier discussed throughout Section 3.

The computation of BPDS involves two key components. First, is the overall optimiza-

tion over x which explores potential BPDS decisions and finds the optimizing vector x.

This requires an “outer loop” numerical optimization to explore x space. In our study, this

is performed using a trust region method, namely Powell’s Derivative Free Optimization

Solvers (PDFO–Ragonneau and Zhang, 2023). Due to the possibility of multi-modality

in Ū(x), the optimization is run repeatedly (in parallel) from multiple starting values.

In some periods over time, we do find evidence of multi-modality, so repeat starts of

the optimization routine are mandated. Second, within each evaluation of a potential

BPDS decision, it is necessary to compute the tilting vector τ (x) given the constraint

Ef [s(y,x)] = mf (x) for a target expected score mf (x).. The theoretical basis of this is an

implicit equation that is solved via standard, generic numerical optimization methods.

Relevant details follow Tallman and West (2023, section 4.4) and are summarized in our

Appendix A.

The BPDS forecast distributions are evaluated using importance sampling. At any

given x, the BPDS predictive distribution in eqn. (1) is simulated by sampling from the

pj(y|x,Mj) in proportions defined by the BPDS probabilities πj(x); then the resulting im-

portance sampling weights are simply proportional to the realized values of αj(y|x). This

provides for efficient computation as well as access to traditional methods and metrics–

such as importance sampling effective sample sizes (ESS, e.g. Gruber and West, 2016,

2017, in related contexts)– to monitor and evaluate the quality of the resulting Monte

Carlo approximations to resulting predictive expectations. Note that this can deliver such

metrics to assess “concordance” between the initial densities pj(y|x,Mj) and their cor-

responding BPDS-tilted versions fj(y|x,Mj) in eqn. (2), as well as that of the initial

mixture p(y|x) and the resulting f(y|x). More aggressive BPDS target scores will gen-

erally lead to lower concordance, and choices can be partly guided by such empirical
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evaluations.

4 Case Study

4.1 Overview

The analysis and all empirical results proceed sequentially on an expanding window

of data beginning in 1992Q2. Our summaries begin with a comparison of the decisions

recommended by BPDS to those suggested by BMA. This is followed by a discussion of the

individual models and how they are combined by BPDS and BMA. Additional discussion

highlights some operational BPDS details to provide further insights into the resulting

decision outcomes.

4.2 Optimal Decisions

Figure 1 shows the actual policy rate each quarter along with the 1−8 quarters ahead

policy recommendations that would have been made by BPDS and BMA. In using the

shadow rate, the zero lower bound is not in effect and negative values for the policy

rate are possible. Recommendations for negative values for the policy rate are not to be

taken literally as advising cuts to a negative Federal Funds rate, but rather a suggestion

to undertake other forms of monetary easing that would be expected to proxy such cuts.

Since 2014 the optimal policy paths recommended by the two approaches are gener-

ally similar, though there are notable differences prior to that time. Some specific periods

of interest are now highlighted.
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2014 to the Present

During this period, BMA and BPDS provide similar recommendations that are often quite

different from the actual policy rate. For almost all of these times, the policy recommen-

dations are to cut interest rates whereas (apart from 2019-2021) the actual policy rate

increased. Some differences do arise between BMA and BPDS, for example, during the

post-COVID inflation BPDS recommends a higher rate path. BPDS is closer to the deci-

sion actually made by the Federal Reserve, although according to BPDS rate cuts should

have begun coming down by now.

The Financial Crisis and Subsequent Recession

It is during this period that the differences between BPDS and BMA are most acute. The

actual policy rate fell slowly during this period. BPDS recommends rate cuts as well,

initially at a more rapid rate than what actually occurred, but as of 2010, its recom-

mendations are similar to the ones the policy makers actually made. In contrast, BMA

recommends huge cuts to the policy rate right at the start of the financial crisis but sub-

sequently consistently argues for rate increases.

The First Years of the 21st Century

In the period from 2003 through the beginning of the financial crisis, the actual policy

rate was gradually increasing. In this period, BMA consistently recommended rapid rate

increases. In contrast, BPDS recommendations were generally similar to what actually

transpired, apart from at the beginning of this period where the advice was to raise the

policy rate more slowly than occurred.
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The 1990s

During this period, the pattern is more mixed. Optimal policy recommendations gener-

ated under each of BMA and BPDS often differed from actual decisions, with no consis-

tent pattern; at times the recommended rates were higher than the actual policy rate,

and at other times they were lower.

A general pattern, one that occurs throughout the sample period, is that BMA and

BPDS typically recommend larger changes in policy rates than were actually implemented

by policy makers. Part of this is presumably due to differences between the policy makers

utility function and those used in our analyses. Other possible explanations are that

policy makers can affect expectations through their communications which is a channel

not captured in the model or their models use a much steeper Phillips Curve. Also, we

focus only on inflation up to 2 years ahead, without considering the possibility of an over-

Figure 1: Recursively calculated policy decisions
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or under-shoot of inflation after 8 quarters while policy makers would generally desire

longer-term targets sustainably.

4.3 Trajectories of BPDS and BMA Predictive Densities

Figures 2–4 shed light on these patterns. These images represent the time trajectories

of predictive densities of inflation at each relevant horizon, using BPDS (Fig. 2) and

BMA (Fig. 3), as well as their differences (Fig. 4). These indicate that the BPDS mixtures

are less dispersed than the BMA mixture for much of the sample period, i.e., BMA predic-

tive distributions are relatively more heavy-tailed, especially at longer horizons. This is

partly due to the BPDS score function emphasizing that the policy maker wants to avoid

extreme inflation outcomes, and also accounts for why BMA often tells policy makers

to make larger changes to the policy rate than BPDS as discussed in Section 4.2. The

differences between BPDS and BMA become larger at longer forecast horizons. Medium

and long-term macroeconomic forecasting is difficult which leads to standard methods

such as BMA producing fairly dispersed predictive densities at longer horizons. BPDS,

on the other hand, is reducing this effect, which dampens the BPDS optimal decisions

and reduces predictive uncertainty relative to BMA. Then, differences between BPDS and

BMA forecast densities are reduced after the financial crisis, which helps account for why

their policy recommendations are similar in the last decade of the sample.

4.4 Model Probabilities

Figure 5 shows the trajectories of model probabilities under BPDS and BMA. These are

the discounted AVS prior model probabilities πtj over time, the implied initial decision-

dependent probabilities πtj(xt) evaluated at the BPDS-optimal decision xt at each time,

the resulting BPDS probabilities π̃tj(xt) of eqn. (3) at each time, and the standard BMA
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Figure 2: BPDS forecast densities of inflation. The frames represent 1–8 quarter ahead
forecasts, reading along the rows from top-left to bottom-right. The colors represent
probabilities with the shading from blue, being lower probability, to red being higher
probability
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Figure 3: BMA forecast densities of inflation. The frames represent 1–8 quarter ahead
forecasts, reading along the rows from top-left to bottom-right. The colors represent
probabilities with the shading from blue, being lower probability, to red being higher
probability
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Figure 4: Difference between BPDS and BMA forecast densities of inflation. Red-shaded
regions have higher probability under BPDS than under BMA, with blue shading indicat-
ing the reverse, and white shading equal probability
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(a) (b)

(c) (d)

Figure 5: Time trajectories of model probabilities. (a) Prior BPDS probabilities πtj based
on discounted AVS with a fixed baseline πt0 = 0.1; (b) BPDS decision-dependent initial
probabilities πtj(xt); (c) Implied BPDS weights π̃tj(xt); (d) BMA probabilities.

probabilities over time.

Under traditional BMA, the two model probabilities are appreciable until the financial

crisis. After the start of the crisis, the less parsimonious M2– that includes additional

financial variables– receives virtually all the weight. In contrast, BPDS weights vary more

over time, allocating most of the weight to the parsimonious M1 for much of the period

(i.e. 1997 through 2017), though M2 plays more of a role at both the beginning and end

of the sample period. That BPDS generally favors the more parsimonious M1, with less
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dispersed forecast distributions, partially accounts for why BPDS often dampens extreme

recommendations made when using BMA.

BPDS probabilities on the over-dispersed M0 are generally small, though with notable

increases at two critical periods: the start of the financial crisis and the start of the

COVID-19 pandemic. In such extreme times, when neither M1 or M2 forecasts well, the

increased probability on the fall-back M0– though small– provides an indicator of this.

The BPDS prior model probabilities πtj based on discounted AVS differ noticeably

from BMA probabilities (except at the very start of the time period). A big impact then

arises from the conditioning on information generated in the decision space to map these

πtj to the decision-dependent weights πtj(xt) at the BPDS optimal decisions xt at each

time. Recall that this mapping theoretically properly takes into account the likelihood

of future, as yet unobserved, interest rate outcomes; this relevant information is not ac-

counted for in the prior weights πtj and is, of course, absent under BMA. The subsequent

map from initial probabilities πtj(xt) to the BPDS weights π̃tj(xt) is wholly based on the

impact of the entropic tilting towards “more favorable” decisions, in expectation. We see

that the impact is rather small over time, and this is to be expected: the BPDS analysis

uses “small” perturbations of the initial mixture based on target expected scores that are

only modest increases over those under the initial mixture. We expect to see slight tilting

towards models that are expected to do well, but not large changes relative to the initial

probabilities.

4.5 Additional Insights from BPDS Results

Time trajectories of the evaluated tilting vectors τt(xt), evaluated at the optimal decisions

xt, are shown in Figure 6. The values generally tend to increase with horizon h, thus

attaching more weight to longer forecasting horizons. This is partly to be expected due

to the higher uncertainties at longer forecast horizons.
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Figure 7 plots trajectories of several effective sample size (ESS) measures arising from

the importance sampling to simulate BPDS predictive distributions as discussed in Sec-

tion 3.3. This provides a read-out of the extent of tilting the initial mixture p(y|x) to

the BPDS mixture f(y|x) as well as that for tilting each of the individual model pdfs

from pj(y|x,Mj) to fj(y|x,Mj) (again, time-indexed and updated throughout the time

series). Until the COVID recession, the ESS of the initial mixture is stable between 90-

Figure 6: Trajectories of the 8 elements of the evaluated BPDS tilting vector τt(xt) at the
optimized xt at each quarter

Figure 7: Trajectories of the effective sample size (ESS) metrics for individual models
and for the BPDS initial mixture
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95% suggesting only a small amount of tilting, as desired. The COVID recession is a

period of rapid change as expected, as we see large changes in the initial weights and

larger values of τ required to achieve the desired target. The low value of ESS indicates

that at that point the target expected scores are unrealistic given the then current state

of the economy. However, the resulting decisions during this time period appear to be

rather sensible, meaning we do not need to be too concerned about the low ESS which

can, in any case, be redressed by simply increasing the overall Monte Carlo sample size

accordingly. The ESS values of individual models are generally lower than that of the

overall mixture and somewhat more volatile. One nice point is that, even when one of

the models seems to suffer a low ESS, the BPDS mixture ESS is generally maintained at

higher values. This indicates that BPDS is able to strike a balance in weighting expected

versus historical performance of models on both predictive and decision outcomes.

Finally, Figure 8 compares the realized trajectories of expected utilities under BPDS

and BMA. Each uses the same utility function to define the final optimal policy path

decision, so these are directly comparable, and the comparison is relevant in terms of the

setting of forward, sequential decisions where a change to much lower values at any time

point should signal concern to the decision-maker. BPDS is designed to target an expected

utility higher than that of the initial mixture, but whether it achieves a higher expected

utility than BMA– which has different initial probabilities and lacks outcome-dependent

weighting– is a question for empirical study. In this example, as illustrated in the figure,

BPDS utility does exceed that of BMA in virtually every period. After the financial crisis,

the two are similar, consistent with the earlier finding that they typically produced similar

decisions during this time period. However, before the financial crisis, there were several

periods during which the BPDS expected utilities were substantially higher than those of

BMA. These correspond to times where we see more differences between optimal policy

path recommendations, and within which there are some periods of greater concordance
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Figure 8: Trajectories of expected utilities comparing BPDS with BMA

between BPDS and actual policy decisions as well as more constrained (i.e., less extreme)

recommended decisions under BPDS relative to BMA.

5 Summary Comments

BPDS is the formal, foundational Bayesian framework that extends traditional Bayesian

model uncertainty analysis to address explicit use of model-specific decision outcomes as

well as purely predictive performance in model comparison and combination. This paper

has adapted the BPDS foundations to define implied methodology in formulating macro-

economic decision-making when faced with multiple objectives and multiple outcomes

of interest in the monetary policy setting.

Earlier applications of BPDS have focused mainly on financial portfolio forecasting

and decisions (Tallman and West, 2023, section 6; Tallman and West, 2024), a setting in

which forecasting models do not (generally) depend on the decisions of interest, while

utility functions may and often do depend on the models and their predictions. In con-

trast, the setting of monetary policy analysis is one in which the dependence of models

and their forecasts on the decision variables (policy instruments) is simply fundamental.

31



It is also a setting in which the decision variables are treated simultaneously as outcomes.

The future paths of central bank interest rates, for example, are modelled as time series

outcomes along with other economic and financial indicators in VAR models. This then

leads to conditioning on decision variables to define predictions of other indicators, with

consequent implications for relative model weights in the model uncertainty setting. This

latter point is critical as it then leads to relatively up- or down-weighting a model based

on how well-supported a particular candidate decision is under its predictions; to our

knowledge, this is the first time this central question has been formally, statistically ad-

dressed. These central features of predictive decision-making in monetary policy contexts

are addressed with extensions and customization of the existing theory of BPDS.

The BPDS perspective– of integrating historical and expected decision outcomes with

focused aspects of statistical predictive performance into relative model weightings– is

new to the policy arena. We argue for this perspective since policy makers are primarily

interested in utilizing sets of models for the eventual policy decisions. Pure forecasting

exercises– and evaluation and combinations of models for prediction per se– is, of course,

of parallel interest and importance. We emphasize that BPDS also involves addressing

predictive performance on specific, defined outcomes of interest. But most importantly,

by putting the spotlight on decision-making, we gain additional insights into policy mak-

ing that are not possible in exercises that focus solely on predictive performance.

In a recursive real-time decision-making exercise, we find substantial differences at

various periods of time between the policy recommendations of BPDS and the traditional

Bayesian model averaging approach, though good concordance at other times. When rec-

ommended policy decisions differ between the approaches, in most cases the BPDS policy

paths are more intuitively sensible and less extreme than under BMA, and more consis-

tent with the actual decisions made by the policy makers at the time. The case study

presented investigates and interprets aspects of BPDS– in terms of differential model
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weights based on historical information alone and then updated based on identified op-

timal decisions, with consequent insights into how the differences relative to standard

BMA arise and are exploited. This case study is a first step towards broader develop-

ment and evaluation of BPDS in a setting with larger numbers of econometric models.

The parallel next steps will naturally include BPDS for scenario forecasting– analyses in

collaboration with policy-makers that explore and aim to understand the sensitivity of

model-based recommendations relative to chosen potential economic scenarios.
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