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Abstract 
We study the falsifiability and identification of Quantal Response Equilibrium (QRE) when 
each player’s utility and error distribution are relaxed to be unknown non-parametric 
functions. Using variations of players’ choices across a series of games, we first show that 
both the utility function and the distribution of errors are non-parametrically over-identified. 
This result further suggests a straightforward testing procedure for QRE that achieves the 
desired type-1 error and maintains a small type-2 error. To apply this methodology, we 
conduct an experimental study of the matching pennies game. Our non-parametric estimates 
strongly reject the conventional logit choice probability. Moreover, when the utility and the 
error distribution are sufficiently flexible and heterogeneous, the quantal response hypothesis 
cannot be rejected for 70% of participants. However, strong assumptions such as risk 
neutrality, logistically distributed errors and homogeneity lead to substantially higher 
rejection rates. 

Topics: Econometric and statistical methods; Economic models 
JEL codes: C14, C57, C92 

Résumé 
Dans la présente étude, nous nous penchons sur la réfutabilité et l’identification de l’équilibre 
de réponse quantale (tout ou rien) lorsque la fonction d’utilité et la distribution des erreurs de 
chaque joueur sont assouplies pour devenir des fonctions non paramétriques inconnues. À 
partir de variations dans les choix que font les joueurs dans un éventail de jeux, nous 
montrons d’abord que tant la fonction d’utilité que la distribution des erreurs sont non 
paramétriquement suridentifiées. Ce résultat sous-entend la possibilité de tester l’équilibre de 
réponse quantale au moyen d’une méthode simple permettant d’atteindre le taux souhaité 
d’erreurs de type 1 et de maintenir un faible taux d’erreurs de type 2. Pour appliquer cette 
méthode, nous menons une étude expérimentale du jeu de l’appariement des sous. Nos 
estimations non paramétriques rejettent fermement le modèle logit habituel pour les 
probabilités de choix. De plus, lorsque la fonction d’utilité et la distribution des erreurs sont 
suffisamment souples et hétérogènes, l’hypothèse relative à la réponse quantale ne peut être 
rejetée pour 70 % des participants. Toutefois, les hypothèses solides, comme la neutralité face 
au risque, la distribution logistique des erreurs et l’homogénéité donnent lieu à des taux de 
rejet nettement plus élevés. 

Sujets : Méthodes économétriques et statistiques ; Modèles économiques 
Codes JEL : C14, C57, C92 



1 Introduction

In many strategic settings, choice behavior systematically deviates from the canonical

solution concept of Nash Equilibrium (NE). These deviations have been documented

using both experimental data from individual decision makers (Goeree and Holt, 2001)

and field data of firms and managers (Goldfarb and Xiao, 2011; Aguirregabiria and Jeon,

2020). To address some of the failures of NE, Quantal Response Equilibrium (QRE;

McKelvey and Palfrey, 1995) has been proposed as an alternative equilibrium concept.

QRE extends the random utility framework to strategic settings where the expected util-

ity of each action is randomly perturbed. This “error” can be interpreted as either a noisy

decision process or the private information of each player. QRE is then defined as a

fixed point in the space of the choice probabilities implied by this error. By incorporat-

ing errors into strategic settings, yet preserving the concept of equilibrium, QRE makes

predictions about behaviors in games that reduce to NE as noise vanishes. It has suc-

cessfully explained many deviations from NE and has become an important benchmark

in game theory (Goeree et al., 2020).1

In a QRE, each player’s behavior / choice probability is completely determined by

two model primitives: (i) the utility function and (ii) the error distribution. Empirical

applications of QRE typically impose strong, restrictive, and potentially mis-specified

assumptions on these two primitives. For instance, the analyst usually assumes that

each player’s utility function is known, identical, and given by monetary payoffs in the

experiment (henceforth, the known utility assumption). This assumption restricts all par-

ticipants to have homogeneous risk-neutral preferences. It is problematic since heteroge-

neous small-stakes risk aversion can be prevalent even in laboratory settings, as identified

by Goeree et al. (2003) and Harrison and Cox (2008), among many others. Further, most

applications also assume that each player’s random errors follow a common distribu-

1For recent work on endogenizing QRE, see Friedman (2020), as well as on an axiomatic variant of
QRE, see Friedman and Mauersberger (2022). Allen and Rehbeck (2021) introduce non-expected util-
ity preference into QRE. For an order-theoretic approach to QRE and an application to coordination in
networks, see Hoelzemann and Li (2022).
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tion and the functional form of this distribution is known by the analyst, e.g., the Logit

distribution. This distributional assumption is considered mainly due to its statistical

convenience, and it imposes strong shape restrictions that could be mis-specified, es-

pecially when the analyst fits aggregate data that consists of heterogeneous participants

(Golman, 2011).2

This paper addresses the identification and testing of QRE when relaxing the above

restrictions on model primitives. In particular, we specify each player’s utility to be a

non-parametric function of their monetary payoffs received in the experiment. In addi-

tion, within each player, the random errors associated with each action are jointly dis-

tributed according to a non-parametric function. Crucially, this distribution function

allows for general error structures, where the random errors of each action may follow

heterogeneous marginal distributions and exhibit arbitrary correlations with the errors of

other actions.3 Given this empirical framework, we focus on experimental settings where

the analyst has full control and can design a series of games with different monetary re-

wards that correspond to different exogenous treatments in the experiment. Each game

could be played either once or with multiple repetitions. Under an invariance assumption

that the utility function and the distribution function remain unchanged across games,

we show that each player’s error distribution is non-parametrically over-identified when

there are sufficient and independent variations of each player’s monetary rewards.

The above non-parametric over-identification result has four important implications.

First, to derive the QRE choice probabilities, an analyst does not have to rely on strong

and potentially mis-specified distributional assumptions. Instead, the analyst can sim-

ply estimate the error distribution, and this empirical estimate is robust to any prefer-

ences over own monetary rewards within the expected utility framework. Notably, a

non-parametric specification, if performed at the population level, can be interpreted as a

2In particular, suppose that all individuals’ errors follow the extreme type-1 distribution (i.e., Logit)
but differ in their sensitivity parameters. Golman (2011) shows that the aggregate behavior could be
described by a representative player who will not behave according to the Logit formula. The actual error
distribution of this representative player depends on the distribution of the sensitivity parameters.

3Of course, the correlation structure has to be permitted by a valid joint distribution function.
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heterogeneous QRE that allows the error distribution to vary across participants (Golman,

2011). Such a proposal has not previously been applied to data due to a lack of identifi-

cation results. The results reported here therefore provide a means to fit heterogeneous

QRE at the population level. Second, since the model primitives are over-identified, it

implies that QRE can be tested employing a standard over-identification test. This test

addresses the non-falsifiability of QRE as raised by Haile et al. (2008), who show that

when the random errors are not i.i.d. across players’ actions and are non-parametrically

specified, QRE can rationalize any vector of choice probabilities and is therefore non-

falsifiable within a game. In contrast, we show that under the invariance assumption, the

variations of players’ choices across games can provide enough identification power to

test QRE.4 Third, most empirical applications of QRE assume that the mean or median of

the error distribution is zero. We show that this restriction is not necessary for identifica-

tion in most experimental datasets. This result allows the analyst to identify the existence

of systematic errors displayed by participants. Fourth, once the distribution function has

been identified, our empirical framework then reduces to a semi-parametric model where

the utility function remains non-parametric but the error distribution is known by the an-

alyst. This semi-parametric model has been studied by Bajari et al. (2010) and Aguir-

regabiria and Xie (2021). Based on their results, non-parametric identification of each

player’s utility function is indeed feasible.

To estimate and test QRE in practice, we exploit non-parametric Maximum Likeli-

hood estimation by the method of sieves. We illustrate the finite sample property of this

method in a Monte Carlo experiment to highlight the importance of relaxing both the

known utility and the distributional assumptions. When either of these assumptions is

mis-specified and behavior is generated by QRE, we find that the test of QRE is sub-

4This idea of exploiting cross-game variation was first conjectured by Haile et al. (2008). Another
approach to address the non-fasifiability of QRE is to impose additional restrictions on the distribution of
random errors across actions and derive the testable implications of QRE within repetitions of the same
game. Two important contributions using this approach are the regular QRE by Goeree et al. (2005) and the
rank-dependent choice equilibrium by Goeree et al. (2019). However, the testable implication is derived
under the known utility assumption, and a formal statistical test has not been derived.
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stantially over-rejected in typical sample sizes of laboratory studies. In particular, the

type-1 error rates may exceed 90% on a purported 5% test. In contrast, under a fully

non-parametric specification, our test achieves the ideal type-1 error rates and therefore

guards against over-rejection of QRE. Moreover, the estimates of both the utility and the

error distribution closely match their true values. Finally, we also simulate the data under

alternative behavioral models such as the canonical Level-k model. In this scenario, our

test has the power to reject the incorrect null hypothesis of QRE with a rejection rate

close to 100%.

To assess the empirical relevance of our results, we conduct a laboratory experiment

of the matching pennies game. We find that QRE under a fully non-parametric speci-

fication fits the data substantially better than existing applications, both in-sample and

out-of-sample. We also observe a substantial reduction in rejections of quantal response

behavior, with rejection rates dropping from 70% to 30% of participants. The estimation

results also strongly reject the usual Logit choice probability. In comparison to a logistic

distribution, our estimated error distribution exhibits a higher probability of both small

and extremely large errors, coupled with a smaller probability of errors of moderate size.

Moreover, the estimated mean of the errors is significantly positive, suggesting that par-

ticipants in our experiment display a systematic error: they tend to mistakenly choose the

action presented at the top of the screen more frequently. Finally, under the conventional

Logit specification, the known utility assumption is highly rejected. In contrast, with

a non-parametric error distribution, a non-linear utility function performs quantitatively

similar to a linear utility function (albeit with possible risk aversion for higher payoffs).

All these results highlight the importance of flexible specifications of model primitives,

and the non-parametric identification results derived in this paper are particularly useful.

This paper relates to two studies that exploit cross-game variations to test QRE. Melo

et al. (2019) consider a non-parametric distribution function but impose the known utility

assumption. Aguirregabiria and Xie (2021) specify a non-parametric utility function but
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maintain the distributional assumption. This paper jointly relaxes both assumptions and

derives a test of QRE. Moreover, we obtain non-parametric identification results of both

model primitives. In contrast, Melo et al. (2019) do not study the identification problem,

and Aguirregabiria and Xie (2021) only report a semi-parametric result.5

QRE shares an identical mathematical structure with Bayesian Nash Equilibrium

(BNE) in incomplete information games where private information is independent across

players. The identification of the latter framework, mainly using field data, has been ex-

tensively studied. In particular, Bajari et al. (2010) consider a non-parametric utility

function but maintain the distributional assumption. Liu et al. (2017) focus on binary

choice games and further relax the distributional assumption, achieving the fully non-

parametric identification for both model primitives. In a recent paper, Xie (2022) extends

these fully non-parametric results to multinomial choice games and attains identification

even when players occasionally deviate from equilibrium. He also derives a testable im-

plication of BNE. Our results advance these results in four directions. First, Xie (2022)

considers a restrictive class of error distributions. In contrast, our experimental setting

allows for general error structures, where the errors of each action can follow heteroge-

neous marginal distributions and exhibit arbitrary correlations across actions. Second,

the testable implication in Xie (2022) relies on an “equal choice probabilities” condition

which is extremely difficult to construct in empirical applications and thus has not been

applied to an actual dataset. Conversely, our results do not require constructing this con-

dition explicitly and are straightforward to implement in practice. We illustrate this using

a dataset from a laboratory experiment of the matching pennies game. Third, our test in-

cludes not only all the testable restrictions derived by Xie (2022), but our experimental

setting allows us to derive many other additional restrictions imposed by QRE. As such,

our test has higher statistical power.6 Finally, Xie’s testable implication is a restriction on

5Goeree et al. (2003) is an early attempt to relax the known utility assumption. They assume a para-
metric utility function and also impose the distributional assumption.

6In our setting, each player’s utility is a function that depends only on their received monetary reward,
and this reward varies across action profiles and games. The structure of monetary payoffs leads to model
restrictions beyond those typical in field data. For instance, suppose that one player receives the same
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players’ choice probabilities, which are multivariate functions of all players’ monetary

payoffs. In contrast, our test is a restriction on model primitives which are single-variable

functions. This dimension reduction ensures precise estimation, especially under a fully

non-parametric specification. It consequently improves the finite sample performance of

the test of QRE.

There are several plausible explanations for why QRE might not be satisfied in an ex-

perimental dataset, such as the existence of other-regarding preference, departures from

expected-utility, and incorrect / biased beliefs about the other player’s behavior. Xie

(2022) attributes non-QRE behavior solely to biased beliefs, allowing identification of

each player’s belief about the other player’s choice. In contrast, this paper remains ag-

nostic regarding the underlying factors that lead to violations of QRE. Instead, we aim to

derive a test that has the power to reject QRE in the presence of any potential factor that

may cause its violation.

The rest of the paper proceeds as follows. Section 2 reviews QRE in 2× 2 games,

and Section 3 presents the identification results and our test. Generalizations to games

with more players and / or more actions require extra notation and are in the appendix.

A Monte Carlo exercise is presented in Section 4, and the laboratory experiment is dis-

cussed in Section 5. We conclude in Section 6. Proofs and other extensions are delegated

to the appendix.

2 QRE in 2×2 Games

Players are indexed by i ∈ {1,2} and −i represents the other player. Each player i simul-

taneously chooses an action, denoted as ai, from their action set Ai = {0,1}. Moreover,

let a = (ai,a−i) ∈ A = Ai ×A−i be an action profile of this game. In an experiment,

when a is the chosen profile, player i will receive a monetary payoff that equals mi(a) in

monetary reward in two action profiles (either in the same game or in different games): our setting implies
that this player must receive the same utility. This restriction (and others) allow us to identify a more
general error structure and obtain a test with higher statistical power.
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experimental currency units.

We define ui(m) : R → R as player i’s utility function, so that their preference de-

pends on, but is not necessarily equal to, their monetary reward m. Given this function,

player i will receive a utility ui[mi(a)] when the realized action profile is a. We consider a

non-parametric specification of ui(m) which allows for any form of self-regarding pref-

erences for money within the expected-utility framework imposed by QRE. Moreover,

we allow ui(·) to be heterogeneous across players or participants in economic experi-

ments. We only impose weak restrictions on ui(m), as stated by Assumption 1.

Assumption 1. Each player i’s utility function ui(m) is bounded. Moreover, it is strictly

increasing and continuous in m.

In this 2×2 game, let mi be a 4×1 vector that equals
[
mi(ai = 0,a−i = 0),mi(ai =

0,a−i = 1),mi(ai = 1,a−i = 0),mi(ai = 1,a−i = 1)
]′. Each element in mi represents

player i’s monetary reward for the corresponding action profile. In our notation of mi(a),

the term mi is not interpreted as a function that depends on a. Instead, mi is treated as an

observed variable that may vary across games, with a serving as an index representing the

|a|th variable.7 In summary, the results in this paper are applicable to any experimental

dataset where the analyst can observe each action profile’s outcome variable mi(a) and

where each player’s preferences are defined over the space of such an outcome variable.

This paper presents results for the analysis of an experiment that comprises a series

of games with varying monetary payoffs. Specifically, let Mi(a)⊂ R denote the support

of mi(a) (i.e., the set of all possible values that mi(a) could take). The set Mi(a) could be

either an interval or even a singleton. Moreover, Mi ⊂ ×aMi(a) represents the support

of player i’s own monetary rewards mi. Assumption 2 states the exogenous condition

imposed on this support. It simply requires that for each player i, the monetary payoff of

at least one action profile has exogenous variation conditional on m−i.

7We define |a| = ai · |A−i|+ a−i + 1. With this definition, mi(a) can be equivalently represented as
mi,|a| and mi is a vector of four variables in the form of (mi,1,mi,2,mi,3,mi,4)

′. We decided against this
alternative representation as it is cumbersome for the proofs of some results.
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Assumption 2. For each player i, the outcome variables mi ∈Mi have exogenous vari-

ations over their support conditional on ∀m−i ∈M−i. Moreover, ∪aMi(a) is an interval

that could be either open or closed.

The structure of M ≡ Mi ×M−i determines the type of game. Other than the ex-

ogeneity condition in Assumption 2, we do not impose additional restrictions on this

structure.8 Therefore, our framework is applicable to a general class of games. For

instance, Table 1 represents a matching pennies game where the analyst independently

varies each player’s monetary rewards for only one action profile, as represented by vari-

ables m1 and m2. In contrast, the payoffs of all other profiles remain unchanged across

games, so that the support Mi(a) is a singleton for these profiles. This matching pennies

game has been studied by Goeree and Holt (2001), among others. We also study this

game in our Monte Carlo exercise and empirical application.

Table 1: Monetary Payoff Matrix of the Matching Pennies (m1 > 8, m2 > 8) Game

MP Player 2

0 1

Pl
ay

er
1 0

8
m1

16
8

1
m2

8
8

16

Table 2 represents a coordination game that is generated by a different structure of

M. Specifically, player i’s payoff of the safe action (i.e., ai = 0) does not depend on the

other player’s choice and varies by the same magnitude across games. In this example,

the payoffs of two action profiles are perfectly positively correlated.

To define QRE in this environment, let p−i(m) denote player −i’s choice probabil-

ity of action a−i = 0, given the control variables m = (mi,m−i). In strategic settings,

8This general structure of M includes experiments that vary every action profile’s payoffs across games
as well as experiments that only vary some profiles’ payoffs while holding the payoffs of other profiles
constant. We only require Mi(a) to be an interval for at least one a ∈A so that the data contains variations
of monetary payoffs. In addition, across games, player i’s monetary rewards of any two action profiles
could be either independent or exhibit arbitrary correlations.
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Table 2: Monetary Payoff Matrix of the Coordination (0 ≤ mi ≤ 15) Game

CO Player 2
0 1

Pl
ay

er
1 0

m2
m1

0
m1

1
m2

0
15

15

a player’s decision depends on both players’ monetary rewards. Specifically, m−i indi-

rectly affects player i’s choice by directly affecting the decision of player −i. Intuitively,

when only m−i varies, it exogenously shifts the indirect impact while holding player

i’s utility of each action profile constant. This variation is the key for our identification

results. Given p−i(m), the expected utility of action ai for player i is as follows:

EUi[mi,ai, p−i(m)] = ui[mi(ai,a−i = 0)] · p−i(m)+ui[mi(ai,a−i = 1)] · [1− p−i(m)].

(1)

This expected utility EUi(·,ai) is a function that depends on player i’s own monetary

rewards mi and their opponent’s m−i, via the other player’s choice probabilities p−i(m).

QRE places an error on this expected utility. Specifically, let εi(ai) denote the error on

player i’s expected utility of action ai. Consequently, player i will choose ai = 0 if and

only if the following condition holds:

EUi[mi,ai = 0, p−i(m)]+ εi(ai = 0)≥ EUi[mi,ai = 1, p−i(m)]+ εi(ai = 1)

⇔ εi(ai = 1)− εi(ai = 0)︸ ︷︷ ︸
=ε̃i

≤ EUi[mi,ai = 0, p−i(m)]−EUi[mi,ai = 1, p−i(m)]︸ ︷︷ ︸
=ẼU i[mi,p−i(m)]

. (2)

To derive the QRE choice probabilities, let Fi(·) be the cumulative distribution func-

tion (C.D.F.) of ε̃i = [εi(ai = 1)− εi(ai = 0)]. We specify Fi(ε̃i) to be a non-parametric

function that is unknown to the analyst and allow this distribution function to be het-

erogeneous across players and experimental participants with the following restrictions

summarized by Assumption 3.
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Assumption 3. (a) Fi(ε̃i) is continuous and strictly increasing over the real line, ∀i.

(b) Fi(ε̃i) is independent of (mi,m−i), ∀i.

Assumption 3(a) is the standard regularity condition. In particular, strict monotonic-

ity implies that the choice probability of ai is strictly increasing in expected utility when

ai is played, known as “responsiveness” (Goeree et al., 2005). The full support condition

of ε̃i ensures that each action is chosen with strictly positive probability and avoids the

zero-likelihood problem (Goeree et al., 2020). Assumption 3(b) is known as the invari-

ance assumption and requires the error distribution to remain unchanged across games.

It is commonly maintained in empirical applications of QRE, including formal tests of

QRE (Melo et al., 2019; Goeree et al., 2020; Aguirregabiria and Xie, 2021). In an ex-

tension offered in the appendix, we relax this invariance assumption by allowing Fi(·) to

depend on player i’s own mi but to be independent of the other player’s m−i.

Given Equation (2) and Fi(·), player i’s choice probability of action ai = 0 takes the

form of a quantal response function, as presented below:

pi(m) = Fi
[

EUi
(
mi,ai = 0, p−i(m)

)
−EUi

(
mi,ai = 1, p−i(m)

)︸ ︷︷ ︸
=ẼU i

(
mi,p−i(m)

)
]
. (3)

In QRE, each player forms correct beliefs about other players’ choice probabilities.

Consequently, QRE is a fixed point in the space of choice probabilities defined by:

Definition 1. The vector
(

pi(m), p−i(m)
)′ denotes the QRE choice probabilities if and

only if the following condition holds:

pi(m) = Fi
[

EUi
(
mi,ai = 0, p−i(m)

)
−EUi

(
mi,ai = 1, p−i(m)

)︸ ︷︷ ︸
=ẼU i

(
mi,p−i(m)

)
]
,∀i and m ∈M. (4)

For any m ∈ M, if there are multiple vectors
(

pi(m), p−i(m)
)′ that satisfy Equation

(4) (i.e., multiple QRE), there exists a mechanism that selects one of the vectors (i.e.,

10



equilibria).

By Brouwer’s fixed-point theorem, any game has at least one QRE. Moreover, many

games could have multiple QRE. When multiple QRE exist, Definition 1 states that there

is a deterministic equilibrium selection mechanism that chooses one of these equilibria.

Therefore, even though there may be multiple equilibria in the model, the analyst only

observes a single equilibrium for each game in the data. Except for this deterministic

condition, we do not impose any further restrictions on the selection mechanism.

3 Identification Results and the Over-Identification Test

In this section, we demonstrate that both the error distribution and utility function can be

non-parametrically over-identified under the QRE restrictions (i.e., Equation (4)). This

result further implies that the null hypothesis of QRE can be tested employing the stan-

dard over-identification test.

To derive these results, we introduce a continuity condition on pi(m).

Assumption 4. For each player i, the choice probability function pi(m) varies with both

mi and m−i. Moreover, pi(m) is continuous over its support M with probability 1. If

there are points of discontinuity in M, the number of all discontinuous points is finite.

This condition is quite weak. When there is a unique equilibrium for each m (e.g.,

matching pennies in Table 1), Assumption 4 trivially holds under the restrictions of QRE

by Definition 1 (Aguirregabiria and Mira, 2019). In scenarios where there are multiple

QRE (for example, the coordination game in Table 2), Aguirregabiria and Mira (2019)

show that every QRE can be classified into a finite number of types. Within each type,

QRE choice probabilities are continuous in m. Consequently, pi(m) is discontinuous

only when players switch between equilibrium types. Importantly, Assumption 4 allows

players to select an equilibrium in any arbitrary way and only restricts the number of

11



equilibrium switching points to be finite.9 Assumption 4 also holds in alternative behav-

ioral models such as Level-k (Nagel, 1995), cognitive hierarchy (Camerer et al., 2004),

and more general iterative reasoning models (Halevy et al., 2023). In these models, the

continuity of the error distribution and the utility function directly implies the continuity

of pi(m).

To derive the identification results, we focus directly on each player’s choice proba-

bility and assume that pi(m) and p−i(m) are observed by the analyst. This assumption

is innocuous since these probabilities can be consistently estimated using choice data. In

practice, this approach is applicable to datasets for which only a single choice is observed

from each (mi,m−i) pair (as in our experiment).10 For notation, we use pure letters (e.g.,

mi) to denote random variables and add superscripts to the letters (e.g., m1
i ) to denote

their realizations.

3.1 Over-Identification of the Error Distribution

Given Assumption 3(a), we can invert the QRE conditions in Equation (4). This inversion

expresses the difference of expected utilities for player i, which is linear in player −i’s

choice probability:

F−1
i [pi(mi,m−i)] = EUi[mi,ai = 0, p−i(mi,m−i)]−EUi[mi,ai = 1, p−i(mi,m−i)]

= π̃i(mi,a−i = 1)+ [π̃i(mi,a−i = 0)− π̃i(mi,a−i = 1)] · p−i(m) ∀i.

(5)

9Notably, we do not require the analyst to know these switching points. For instance, consider the
coordination game in Table 2. It is reasonable to expect that players may choose the equilibrium with a
low probability of the safe action (i.e., action 0) when the payoff for the safe action—as represented by
mi—is relatively low. As mi increases, players may switch to the equilibrium with a higher probability of
action 0. Assumption 4 includes this reasonable equilibrium selection mechanism as a special case.

10In more detail, suppose that the analyst has a dataset of a series of games with different (mi,m−i).
If pi(m) is continuous ∀m ∈ M, the analyst could use the Nadaraya-Waston estimator or the method of
sieves to consistently estimate pi(m). If this choice probability function contains finite discontinuous
points, consistent estimation could be also attained using the methods developed by Müller (1992) and
Delgado and Hidalgo (2000).
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To derive the second line of Equation (5), EUi(·) needs to be replaced with its defini-

tion in Equation (1) and we define π̃i(mi,a−i) = ui[mi(ai = 0,a−i)]−ui[mi(ai = 1,a−i)];

where π̃i(mi,a−i) represents the difference of the utilities between player i’s two actions

given the other player’s choice a−i.

Equation (5) contains all model restrictions that are imposed on player i’s behavior

and, importantly, implies that the error distribution is over-identified. To see why, first

define Pi(m1
i )⊂ [0,1] as the image of the choice probability function pi(mi,m−i) when

the analyst fixes mi at m1
i but varies m−i over its support. Similarly, let Pi ⊂ [0,1] denote

the image of pi(mi,m−i) when the analyst varies both mi and m−i. Given Assumptions 2

and 4, these images are either an interval or a union of finite numbers of disjoint intervals.

Proposition 1 describes the over-identification of Fi(·).

Proposition 1. Suppose that Assumptions 1 to 4 and the QRE restrictions hold. Suppose

further that the analyst fixes mi at an arbitrary value m1
i and only considers the variation

of m−i. If there exist two distinct values of probabilities, denoted as p1, p2 ∈ Pi(m1
i ),

such that the values of F−1
i (p1) and F−1

i (p2) are known by the analyst, then the quantile

function F−1
i (p) is point identified ∀p ∈ Pi(m1

i ).

Proof. See the appendix.

Proposition 1 identifies the quantile function F−1(p) and consequently the distribu-

tion function Fi(ε̃) due to the inverse relationship between the two functions. Moreover,

by applying Proposition 1 for each mi ∈ Mi, the analyst can identify F−1
i (p) over its

entire support, i.e., ∀p ∈ Pi.

The over-identification result arises from a combination of the restrictions imposed

by QRE. Specifically, player i’s decision rule (Equation (2)) can be interpreted as a dis-

crete choice model where each action ai has a deterministic component EUi[mi,ai,p−i(m)]

and a perturbed error εi(ai). In single-agent models without uncertainty, Norets and

Takahashi (2013) show that without additional restrictions on the deterministic compo-

nent, even partial identification of the error distribution is impossible. However, the
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expected utility preference (which is assumed by QRE) places additional structures that

allow the exogenous variation of m to point identify the error distribution. Specifically,

player i’s expected utility function EUi(·) is linear in the other player’s choice probabil-

ity, despite the non-parametric utility function ui(·).

It is this linearity combined with the QRE choice rule that leads to Equation (5),

which is the key equation to establish our identification results. Consider fixing mi at

some value m1
i while varying the other player’s m−i. Since player i’s monetary re-

wards are fixed, their utility difference remains unchanged at π̃i(m1
i ,a−i). In contrast,

the choice probability of the other player p−i(m) depends on both mi and m−i and will

shift due to variation in m−i. Consequently, the right-hand side of Equation (5) can be

viewed as a linear regression where p−i(m) is the independent variable with a coefficient

[π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] and an intercept π̃i(m1
i ,a−i = 1). This linear struc-

ture is akin to the semi-parametric binary choice models studied by Klein and Spady

(1993) and Lewbel (2000), who established the non-parametric identification of the error

distribution. Importantly, our framework remains fully non-parametric in both the utility

and the distribution functions.

Proposition 1 requires the analyst to know ex ante the values of the quantile function

at two probabilities p1 and p2. In the context of discrete choice games with field data,

Liu et al. (2017) show that this requirement is innocuous and is equivalent to the standard

location and scale normalizations required by discrete choice models (Train, 2009).11

In Subsection 3.3, we show that in experimental settings, the values of F−1
i (p1) and

F−1
i (p2) can be identified under weaker assumptions and are therefore not required to be

known.

We refer to Proposition 1 as the over-identification result. Intuitively, with only two

values of mi, Proposition 1 implies that F−1
i (·) is over-identified. In the next subsection,

11For instance, let p1 = 1/2, then setting F−1
i (p1) = 0 is equivalent to the location normalization that

sets the median value of ε̃i to zero. Moreover, let p2 be the cumulative probability at one standard deviation
above the mean (e.g., approximately 68% for the normal distribution and roughly 86% for the Logit speci-
fication), then setting F−1

i (p2) = 1 is equivalent to the scale normalization that sets the standard deviation
of ε̃i to one.
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we build on this intuition and construct an over-identification test for the hypothesis of

QRE for all mi.

3.2 Test of QRE

Let F̂−1
i (p|m1

i ) be the quantile function that satisfies the QRE restrictions when the ana-

lyst fixes mi at m1
i . Specifically, F̂−1

i (p|m1
i ) satisfies the following equation:

F̂−1
i [pi(m1

i ,m−i)|m1
i ] = π̃i(m1

i ,a−i = 1)+[π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)]· p−i(m1
i ,m−i).

(6)

Proposition 1 shows that F̂−1
i (p|mi) can be identified for each mi. This implies an over-

identifying restriction such that F̂−1
i (p|m1

i ) = F̂−1
i (p|m2

i ) ∀m1
i ̸= m2

i . This restriction

can be used to test the null hypothesis of QRE as stated in Proposition 2.

Proposition 2. Suppose that Assumptions 1 to 4 hold and consider any two realizations

of mi denoted as m1
i and m2

i such that Pi(m1
i )∩Pi(m2

i ) includes an interval. If there

exist two distinct probabilities denoted as p1, p2 ∈ Pi(m1
i )∩Pi(m2

i ) such that the values

of F−1
i (p1) and F−1

i (p2) are known by the analyst, then the null hypothesis of QRE

implies the following testable restriction:

F̂−1
i (p|m1

i ) = F̂−1
i (p|m2

i ), ∀p ∈ Pi(m1
i )∩Pi(m2

i ). (7)

Proof. A direct implication of Proposition 1.

Equation (7) is a testable implication of player i’s quantal response behavior, testing

whether they quantal respond to other players’ choice probabilities. To perform our test

of QRE, we examine whether Equation (7) jointly holds for every player; therefore, we

employ the equilibrium correspondence approach as described in Sections 4 and 5.
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Proposition 2 extends and generalizes previous tests of QRE in the existing literature.

In particular, Xie (2022) also derives a non-parametric testable implication of BNE and

equivalently of QRE. His result can be summarized by the following lemma:

Lemma 1. (Xie 2022) Suppose that Assumptions 1 to 4 hold. For any three pairs of

realizations of (mi,m−i) that satisfy the condition pi(m1
i ,m

1(l)
−i ) = pi(m2

i ,m
2(l)
−i ) for l =

1,2,3; QRE implies the following testable restriction:

p−i(m1
i ,m

1(3)
−i )− p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )− p−i(m1

i ,m
1(1)
−i )

=
p−i(m2

i ,m
2(3)
−i )− p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )− p−i(m2

i ,m
2(1)
−i )

, (8)

when pi(m1
i ,m

1(1)
−i ) ̸= pi(m1

i ,m
1(2)
−i ).

Our over-identification test illustrated in Proposition 2 advances Xie (2022)’s test in

three important directions. First, as shown in Lemma 1, Xie (2022) requires an equal

choice probability condition for at least three pairs of games.12 This condition is difficult

to construct in an actual dataset because it requires equating two estimated quantities

and has yet to be implemented.13 In contrast, our test in Proposition 2 circumvents the

equal choice probability condition. It is, essentially, a by-product of the non-parametric

estimation of the model primitives. Such estimation methods have been well developed

in the econometrics literature. For our experimental analysis in Section 5, we apply

non-parametric MLE by the method of sieves (Chen, 2007) to obtain the non-parametric

estimate of the error distribution and implement the test.

Second, to implement Xie (2022)’s test, the analyst has to estimate and test the restric-

tions on each player’s pi(mi,m−i), which is a multi-variate function. In contrast, our test

requires the estimation of just two single-dimensional functions: Fi(ε̃i) and ui(m). This

dimension reduction improves estimation precision in finite samples, especially with a

12Precisely, a pair consists of two games with different realizations of (mi,m−i), and player i’s choice
probability must remain constant within each pair.

13Specifically, it requires equating two functions of the estimates pi(m). This process incurs estimation
error that substantially complicates the derivation of the finite sample property of the test.
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fully non-parametric specification. The benefit of dimension reduction is even more pro-

nounced as the number of actions and / or players increases.14

Finally, our over-identification test includes not only all the testable implications

derived by Xie (2022) but also many additional restrictions imposed by QRE. Conse-

quently, our test has higher statistical power. While the detailed descriptions and proofs

of these results are left to the appendix, we conduct a simulation of the matching pennies

game in Table 1 to explain how our test nests Xie (2022). Figure 1 shows simulated

choice probabilities under QRE restrictions for various monetary payoffs.15 The left

panel plots Player 1’s choice probability as a function of m2. We hold m1 constant at two

distinct values: m1
1 = 10 (m2

1 = 16) is depicted using the blue (black) curve. It also iden-

tifies three pairs of games that satisfy the equal choice probability condition for Player 1.

Xie (2022) shows that under QRE, the ratio of the change in Player 2’s choice probabili-

ties across these pairs must be equal. These changes in p2(·) are depicted by the colored

dashed lines in the right panel. Based on Xie’s test, the ratio of two dashed blue lines

must equal the ratio of two dashed black lines.

As described in the appendix, our over-identification test implies that the ratio of

both the change and the level of Player 2’s choice probabilities across pairs must be

equal. Consequently, our test can be visualized by at least two restrictions in the right

panel: the first one, as described by Xie (2022) on the colored dashed lines, and the

second visualized by a set of two similar triangles positioned on the blue and black

curves respectively.

Figure 2 shows a simulation of behavior that violates QRE. We fix Player 2’s choice

probabilities at their QRE levels, but we assume that Player 1 always underestimates

Player 2’s choice probability by 20 percentage points. These behaviors clearly violate

14The dimension of pi(mi,m−i) grows in the order of |A|N , where |A| is the number of action profiles
and N is the number of players. In contrast, the dimension of the error distribution only increases in the
order of |Ai|, which is merely the number of player i’s actions. Additionally, the single dimension of the
utility function remains constant.

15For illustrative purposes only, our simulation simply assumes players’ utilities equal their monetary
payoffs (i.e., ui(m) = m) and employs the Logit choice probability.
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Figure 1: Testable Implication of QRE

QRE, but they align with the testable implication proposed in Xie (2022). In contrast,

such behaviors do not satisfy our additional testable implications, causing the two dis-

similar triangles on the blue and black curves. This example graphically highlights the

additional statistical power of our test. Notably, in the appendix, we show that there are

many other testable implications of QRE in addition to Xie (2022). These implications

are difficult to visualize and are not depicted in Figures 1 and 2. They are, however,

included in our over-identification test.

3.3 Identification of Normalizations and the Utility Function

Most empirical applications of QRE assume that two actions will be chosen with equal

probability if they share the same expected utility. In our framework, this assumption

corresponds to assuming that the median of ε̃i is zero. In this subsection, we show that

such an assumption is not necessary for identification. In fact, the analyst can identify

the median value of ε̃i.

As described in footnote 11, we shall refer to F−1
i (p1) and F−1

i (p2) as the median

and the standard deviation of ε̃i, respectively. To identify these two values, we introduce
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Figure 2: Violation of the Testable Implication under Non-QRE Behaviors

an innocuous scale normalization on the utility function, as described by the following

assumption:

Assumption 5. For each player i, there exists a realization mi =m1
i such that π̃i(m1

i ,a−i =

1) = 1.

Assumption 5 normalizes the scale of player i’s utility function. It is innocuous given

that ui(m) is strictly increasing.16 Proposition 3 shows that once the analyst determines

the scale of the utility function, the standard deviation of the error distribution is identi-

fied (i.e., the value of F−1
i (p2)).

Proposition 3. Suppose that Assumptions 1 to 5 and the QRE restrictions hold. If there

exists one probability denoted as p1 ∈ Pi(m1
i ) such that the value of F−1

i (p1) is known

by the analyst, then the quantile function F−1
i (p) is point identified ∀p ∈ Pi(m1

i ).

Due to Proposition 3, the only value that requires the analyst’s prior information is

the median of ε̃i (i.e., F−1
i (p1)). In the appendix, we show that in any experiment, as long

16Since any affine transformation of utility ui(m) = c+β ûi(m) for β > 0 represents the same prefer-
ences, the analyst needs to normalize the values of c and β . For any utility function ûi(m), Assumption 5
simply transforms ûi(m) to its equivalent form by setting β = 1

ûi[m1
i (ai=0,a−i=1)]−ûi[m1

i (ai=1,a−i=1)]
. Here, of

course, the analyst can ensure a positive denominator by relabeling each player’s action.
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as there is exogenous variation of the monetary payoffs for at least two action profiles

for each player, this median value is identified.

When there is variation of monetary reward for only one action profile, the identifi-

cation of F−1
i (p1) requires special structures of monetary payoffs. Assumption 6 sum-

marizes two such structures, which are satisfied in the matching pennies game presented

in Table 1.

Assumption 6. Consider the following properties of monetary payoff matrices ∀i:

(a) There exists one realization of mi, denoted as m1
i , such that m1

i (ai,a−i) = m1
i (1−

ai,1−a−i) ∀ai,a−i.

(b) There exist two realizations of mi, denoted as m1
i and m2

i , such that m1
i (ai,a−i) =

m2
i (1− ai,a′−i) ∀ai and for some a−i and a′−i. Note that a−i and a′−i could be either

distinct or identical actions of player −i.

Assumption 6(a) considers a design where player i’s payoffs for both actions are

reversed across the other player’s choices within a game. It holds in Table 1 when mi =

16. Assumption 6(b) follows similarly except it reverses payoffs across games with

either varying or fixing actions of the other player. It holds in Table 1 when the analyst

considers two values m1
i = 16 and m2

i ̸= 16. Notably, this condition is also satisfied in

the coordination game in Table 2 when the two values are m1
i = 0 and m2

i = 15.

When either condition in Assumption 6 holds, the median value of ε̃i can be identi-

fied, as established by the following proposition:

Proposition 4. Suppose that Assumptions 1 to 5 and the QRE restrictions hold. Further-

more, suppose there exist two values mi =m1
i ,m2

i such that Pi(m1
i )∩Pi(m2

i ) includes an

interval. Moreover, either m1
i satisfies Assumption 6(a) or m1

i and m2
i satisfy Assumption

6(b), then the quantile function F−1
i (p) is point identified ∀p∈Pi(m1

i )∪Pi(m2
i ), without

assuming that the value of F−1
i (p1) is known ex ante by the analyst.

Proof. See the appendix.

20



The identification of the median value of ε̃i, as established in Proposition 4, can be

used to test the common assumption that the errors are i.i.d. across player i’s actions.

In particular, this i.i.d. restriction on εi(ai) implies that the difference of errors ε̃i is

symmetrically distributed and has a median of zero.

Given that Fi(ε̃i) has been identified, we borrow the results from the existing litera-

ture to identify non-parametrically the utility function, as summarized by the following

lemma.

Lemma 2. (Bajari et al. 2010) Under Assumptions 1 to 6 and QRE restrictions, Fi(ε̃i)

is point identified. Therefore, the empirical model reduces to the semi-parametric speci-

fication by Bajari et al. (2010), where the error distribution is known by the analyst and

the utility function is non-parametric. Therefore the difference in utility π̃i(mi,a−i) =

ui[mi(ai = 0,a−i)]−ui[mi(ai = 1,a−i)] is point identified ∀mi ∈Mi, i and a−i.

By setting either ui(0) = 0 or ui[min{∪aMi(a)}] = 0, the identification of the dif-

ference in utilities from Lemma 2 consequently identifies the utility function ui(m) non-

parametrically ∀m ∈ ∪aMi(a).

4 Monte Carlo Experiment

We now describe our estimation and testing procedures and examine their finite sample

performance in a Monte Carlo exercise using the matching pennies game depicted in

Table 1. We evaluate the test in two different scenarios: one where data is generated in

a QRE, and another in which QRE is not satisfied. Moreover, we design the exercise to

closely align with the actual experiment that will be discussed in Section 5. As such, the

Monte Carlo results can be used to evaluate the reliability of the empirical findings from

our experiment.
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4.1 Design of the Monte Carlo Experiment

In our experiment, each participant makes a choice in 200 rounds. For our Monte

Carlo exercise, in each of S = 1000 simulations we generate a dataset with T trials

where T ∈ {200,2000}. Therefore, T = 200 and T = 2000 can be viewed as repre-

senting situations where the analyst recruits one or ten participants per player role, re-

spectively.17 We independently and uniformly draw m1 and m2 from the discrete set

M= {10,12, . . . ,46,48} with step size of 2.18

In this Monte Carlo exercise, we consider three data-generating processes. The first

process assumes that data is generated consistently with QRE. In this scenario, the rejec-

tion rate of our proposed test should match the pre-specified significance level. Moreover,

our procedure should obtain the estimates of utility and error distributions that are close

to their true values.

The second and third processes generate data that is inconsistent with QRE. These

scenarios illustrate whether our test has the power to reject a false hypothesis and achieve

a small type-2 error. We therefore consider a modification of the Level-k model to gener-

ate non-QRE behavior (Nagel, 1995; Stahl and Wilson, 1994, 1995; Halevy et al., 2023).

Specifically, the level-0 type randomly selects each action with equal probability. For any

k > 0, the level-k type believes that their opponent is the level-(k−1) type and quantal

responds to such belief (i.e., a random error perturbed to the expected utility).

In the second process, we consider the symmetric level-k case where both players

are of the same type and generate data for k ∈ {1,2,3}. Therefore, the quantal response

function in Equation (3) does not hold for either player. The third process studies an

17In the actual experiment, we recruited 50 participants per role, thus corresponding to T = 10,000. It
is computationally challenging to run a Monte Carlo with this sample size as it requires the estimation to be
repeated for 1,000 simulations in total. Moreover, our estimator and test achieves the desired performance
when T = 2000.

18The continuity condition of mi is approximated by a discrete uniform distribution with a small step
size. Ideally, the step size should decrease as the sample size increases so that M is dense in the continuous
interval [10,48] as T → ∞. However, this simulation maintains a fixed step size for two reasons. First, the
step size of 2 aligns with our experiment in Section 5, and the Monte Carlo exercise aims to evaluate the
performance of our estimator and test it using this specific step size. Second, shrinking the step size in
larger samples substantially increases the computational burden.
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asymmetric level-k setting where Player 1 reasons one level beyond Player 2. Therefore,

the quantal response function in Equation (3) holds for Player 1 but not for Player 2. This

scenario illustrates the performance of our test at either the player or the participant level.

The test should frequently reject quantal response behavior for Player 2. By contrast, the

rejection rate of the same hypothesis for Player 1 should be low and close to the desired

type-1 error rate. We consider two different levels (k = 2,3) for Player 1.

4.1.1 Utility Function and Error Distributions

For convenience and comparability, we normalize the utility of the lowest possible (m =

8) and highest possible (m = 48) monetary rewards to zero and one, respectively, via the

transformation m̃ = m−8
48−8 so that m̃ ∈ [0,1]. In line with most experimental studies, we

consider a CRRA utility function over the transformed monetary payoff m̃:

ui(m̃) = m̃ν . (9)

The risk preference parameter ν is set to 0.6 to model risk aversion, in line with the

estimate obtained by Goeree et al. (2003) in their matching pennies game using the QRE

framework.

We consider two candidates for the error distributions, both of which differ from the

common specification of Logit or Probit. This allows us to investigate the consequences

of imposing common distributional assumptions that are potentially mis-specified. In

particular, we consider both a symmetric and an asymmetric error distribution:

Symmetric: ε̃i ∼ 0.5 ·Logistic(0,7.5 ·3)+0.5 ·Logistic
(

0,7.5 ·
√

9
35

)
,

Asymmetric: ε̃i ∼ 0.5 ·Logistic
(
−0.2,7.5 ·

√
4

15

)
+0.5 ·Logistic(0.2,7.5 ·2), (10)

where Logistic(µ,λ ) = exp[λ (εi−µ)]
1+exp[λ (εi−µ)] is the C.D.F. of the logistic distribution, with a

mean of µ and a sensitivity parameter λ .
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Equation (10) draws ε̃i from a mixture of logistic distributions, in line with the hetero-

geneity results described by Golman (2011). The symmetric case represents a population

of two types of individuals, where one type makes smaller errors and consequently has a

higher sensitivity parameter (λ = 7.5 ·3) than the other
(

λ = 7.5 ·
√

9
35

)
. In the asym-

metric distribution, alongside the heterogeneity in λ , individuals also make systematic

errors. One type systematically under-values the expected utility of ai = 0 by 0.2 while

the second type over-values it by the same amount. Since the over-valuing type also has a

higher λ , the population level ε̃i is asymmetrically distributed with a higher density in the

positive region. Figure 3 plots the P.D.F. of the symmetric and asymmetric distributions,

alongside a comparison with the Logit specification.

Figure 3: Probability Density Functions of the Random Perturbation ε̃i

We set the scale of ε̃i based on the empirical estimates in Section 5. In particular, the

variances of ε̃i for both symmetric and asymmetric cases are set to Var(ε̃i) =
π2

3×(7.52)
≈

0.0585. This value of variance corresponds to λ =
√

π2

3Var(ε̃i)
= 7.5 if ε̃i were logistically

distributed. Notably, this closely matches the empirical estimate of our actual experiment

in Section 5 (i.e., λ̂ = 7.505) and is consistent with the estimate reported in Goeree et

al. (2003), that is, λ̂ = 6.67, for a different matching pennies game but under the same
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normalization of the utility function.

The scale of ε̃i plays an important role in shaping players’ choice probabilities under

both QRE and Level-k. In particular, the key convergence properties in Logit QRE, as

derived in McKelvey and Palfrey (1995), also hold for the general distribution function

Fi(ε̃i) in our framework.19 In the appendix, we prove these convergence properties and

provide a detailed analysis of comparative statics.

4.2 Estimation, Testing Procedures, and Results

4.2.1 Estimation

We exploit the method of sieves to perform a non-parametric maximum likelihood es-

timation. As reviewed in Chen (2007), this method replaces a non-parametric function

by a less complex function with finite-dimensional parameters. The dimension of these

parameters increases as the sample size increases so that a less complex function can

asymptotically approximate the original non-parametric function arbitrarily well.

The utility function is approximated using a Bernstein polynomial of order Lu,

u(m̃) =
Lu

∑
l=0

θ
u
l ·Bl,Lu(m̃) (11)

with the lth basis function denoted as Bl,Lu(m̃) =
(Lu

l

)
· m̃l · (1− m̃)Lu−l . As Lu → ∞,

the Bernstein polynomial will converge uniformly to the continuous function u(m̃) with

θl = u( l
Lu
).20 We set Lu = 3 (4) when T = 200 (2000).

Further, we approximate the distribution function using a mixture of normal distribu-

19For some intuition, as Var(ε̃i) decreases, player i tends to choose the action with a higher expected
utility more frequently. When Var(ε̃i)→ 0, player i deterministically selects the action that maximizes the
expected utility. Conversely, as Var(ε̃i)→ ∞, player i randomizes each action with equal probability.

20In a large sample with sufficiently high order, this property could be exploited to impose regular
restrictions on the utility function, such as strict monotonicity and concavity, which can improve the per-
formance of the estimator (Compiani, 2022). We, however, do not utilize this property in our analysis due
to a limited sample size and a relatively low order.
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tions:

Fi(ε̃i)≈
LF

∑
l=1

θ
Pr
l ·Φ

(
ε̃i −θ

µ

l
θ σ

l

)
, (12)

where Φ(·) is the C.D.F. of the standard normal distribution. Each distribution indexed by

l has a mean of θ
µ

l and a standard deviation of θ σ
l . As the number of mixing distributions

LF → ∞, the mixture of these distributions can effectively approximate any continuous

distribution with high accuracy (Chen, 2007). In our estimation, we find that LF = 2

performs well.

Let θ =(θ u,θ Pr,θ µ ,θ σ )′ denote the vector of unknown parameters in both the utility

function and the distribution function. We estimate these parameters using the equilib-

rium correspondence approach (Goeree et al., 2020). In particular, given θ , we obtain

the approximated utility and distribution functions and then solve for each player’s QRE

choice probability, denoted as pQRE
i (m̃|θ), using Equation (4). In the matching pen-

nies game represented in Table 1, there exists a unique QRE for all m̃. In applications

with multiple QRE, the analyst has to select an equilibrium selection mechanism. Given

pQRE
i (m̃|θ), the unknown parameters θ are estimated by maximizing the following log-

likelihood function:

LLQRE =max
θ

2

∑
i=1

T

∑
t=1

{
1(ai,t = 0) · log[pQRE

i (m̃t |θ)]+1(ai,t = 1) · log[1− pQRE
i (m̃t |θ)]

}
.

(13)

4.2.2 Testing

We exploit the over-identification result in Proposition 2 to test QRE. First, given pQRE
i (m̃|θ),

we obtain the difference in expected utilities for player i under the QRE restriction, which

we denote as ẼU i(m̃i, pQRE
−i (m̃i|θ)). To test QRE, we consider a general model that

explicitly allows each player i to exhibit non-QRE behavior with the following choice
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probability:

pNon−QRE
i (m̃|θ ,γi) =


Fi[ẼU i(m̃i, pQRE

−i (m̃|θ))] = pQRE
i (m̃|θ) if m̃ /∈ M̃

Fi[ẼU i(m̃i, pQRE
−i (m̃|θ))+ γi(m̃)] if m̃ ∈ M̃

. (14)

M̃ is a subset of the support for m̃ = (m̃1, m̃2). When m̃ /∈ M̃, Equation (14) states

that player i behaves according to QRE. When m̃ ∈ M̃, Equation (14) permits non-QRE

behavior. The bias term γi(m̃) captures the degree of player i’s departure from QRE in

the metric of expected utility.

The specification of Equation (14) follows directly from Proposition 2. In particular,

γi(m̃) can be alternatively interpreted as the difference between the quantile function

identified by observations in M̃ as opposed to the one obtained by observations not in

M̃. As in Proposition 2, QRE implies that γi(m̃) = 0 and we test this restriction.

To ease the estimation burden, we consider a linear specification of γi(m̃).

γi(m̃) = γi,0 + γi,1m̃i + γi,2m̃−i. (15)

We set M̃= [0.2,0.85]2, ensuring that approximately 50% of the observations fall within

M̃ and the rest fall outside of M̃. The model and bias parameters are estimated by MLE:

LLNon−QRE =max
θ ,γ

2

∑
i=1

T

∑
t=1

{
1(ai,t = 0)·log[pNon−QRE

i (m̃t |θ ,γi)]+1(ai,t = 1)·log[1− pNon−QRE
i (m̃t |θ ,γi)]

}
.

(16)

The test of QRE is equivalent to testing whether γ = (γ1,γ2) = 0. The latter can sim-

ply be performed by the standard likelihood ratio test with the test statistic 2(LLNon−QRE −

LLQRE). Under the QRE hypothesis, this statistic follows an asymptotic Chi-squared dis-

tribution with the degree of freedom given by the dimension of γ (i.e., 6).

Test of Quantal Response Behavior for Each Player Proposition 2 can also be ex-

ploited to test the hypothesis that player i quantal responds to player −i’s choice prob-
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ability. This test focuses on the choice of each individual player rather than their joint

behavior. To perform such a test, we consider the empirical payoff approach (Goeree

et al., 2020) and first non-parametrically estimate each player’s choice probability in a

reduced form:

p̂i(m̃) =
exp[∑L

l=0(∑
l
h=0 ρ̂l,h · m̃h

1 · m̃
l−h
2 )]

1+ exp[∑L
l=0(∑

l
h=0 ρ̂l,h · m̃h

1 · m̃
l−h
2 )]

. (17)

Equation (17) considers a Logit probability with a non-parametric specification for the

index value. This non-parametric index is approximated by a high order polynomial. In

the estimation, we find that an order of L = 3 performs well.

We reconsider Equation (14) but now we replace pQRE
−i (m̃|θ) with the other player’s

empirical choice probability p̂−i(m̃). It leads to the following choice probability for

player i:

pNon−QR
i (m̃|θi,γi) =


Fi[ẼU i(m̃i, p̂−i(m̃))] if m̃ /∈ M̃

Fi[ẼU i(m̃i, p̂−i(m̃))+ γi(m̃)] if m̃ ∈ M̃

. (18)

Equation (18) explicitly permits non-quantal response behavior, and the bias param-

eters γi can be consistently estimated by MLE:

LLNon−QR
i =max

θi,γi

T

∑
t=1

{
1(ai,t = 0)·log[pNon−QR

i (m̃t |θi,γi)]+1(ai,t = 1)·log[1− pNon−QR
i (m̃t |θi,γi)]

}
.

(19)

Therefore, the null hypothesis of player i’s quantal response behavior can be assessed by

testing whether γi = 0, which is performed by the standard likelihood ratio test.

Similar to the above test of quantal response behavior at the participant level, the

empirical payoff approach can also be exploited to estimate model primitives and test the

QRE hypothesis. This approach is computationally efficient since it first estimates the

equilibrium choice probability and avoids having to solve QRE for each iteration of θ .

Moreover, in applications with multiple QRE, it does not require the analyst to impose an

equilibrium selection mechanism but instead estimates the actual equilibrium observed
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in data. However, the empirical payoff approach produces a first-step estimation error

which leads to inefficient estimates of model primitives.21 Moreover, since it requires the

estimation of the multivariate choice probability function, the benefit due to dimension

reduction—as described in Subsection 3.2—vanishes. For these reasons, we focus on the

equilibrium correspondence approach to estimate model primitives and test QRE in this

study.

4.2.3 Monte Carlo Results

Data Generated by QRE Table 3 presents the rejection rates of our test when the data

is generated by QRE behavior, consequently representing the type-1 error. The rejection

rates are calculated based on 1,000 Monte Carlo datasets. We compare the results for four

specifications. The first assumes that the analyst knows the true utility and distribution

functions (labeled as “Known Utility & Known Error”). It inserts these true functions

into the estimation procedure and tests whether the vector γ = 0. Obviously, this model

is infeasible in an actual dataset, but it serves as a natural benchmark for the comparison

of other specifications.

Table 3: Rejection Rates of the Over-Identification Test of QRE (QRE Data)

Symmetric Distribution Asymmetric Distribution
Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
T = 200
Known Utility & Known Error 12.4% 6.4% 1.0% 13.0% 7.4% 2.1%
Unknown Utility & Unknown Error 15.8% 8.7% 1.8% 23.9% 16.1% 6.1%
Linear Utility & Known Error 48.8% 35.7% 16.8% 28.6% 17.9% 7.6%
Known Utility & Logit Error 14.2% 7.5% 1.5% 65.4% 52.4% 29.3%
T = 2000
Known Utility & Known Error 11.1% 4.3% 0.3% 11.8% 6.1% 1.2%
Unknown Utility & Unknown Error 12.6% 6.7% 1.4% 13.2% 7.7% 1.7%
Linear Utility & Known Error 100.0% 100.0% 99.9% 97.2% 94.4% 84.9%
Known Utility & Logit Error 46.5% 33.2% 13.5% 100.0% 100.0% 100.0%

Notes: Rejection rates are calculated based on 1,000 Monte Carlo samples.

21To deal with the first-step estimation error in the test of quantal response behavior, we input the true
value of pi(m) in the Monte Carlo exercise. In the actual experiment, we assume away the first-step error.
This is because the first-step estimates choice probabilities at the population level, which are based on a
substantially larger sample size than the second step, which tests model primitives at the participant level.
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Our framework that non-parametrically specifies both the utility and the distribution

functions and tests QRE as in Subsection 4.2.2 is labeled as “Unknown Utility & Un-

known Error”. As shown in Table 3, when the sample size is moderate (i.e., T = 2000

or 10 participants per player role), the rejection rates align with the pre-specified signif-

icance levels, for both symmetric and asymmetric distributions. Consequently, our test

achieves the desired type-1 error rate. When the sample size is small (i.e., T = 200 or 1

participant per player role), our test tends to over-reject QRE due to small sample bias,

especially when the error distribution is asymmetric.22

The remaining two specifications illustrate the consequences when either the utility

function or the distribution function is mis-specified. The third specification assumes

that the analyst knows the true distribution function but mis-specifies the utility function

as ui(m̃) = m̃ (labeled as “Linear Utility & Known Error”). The fourth specification

assumes that the analyst knows the utility function but mistakenly considers the Logit

choice probability (labeled as “Known Utility & Logit Error”). As shown in Table 3,

when either the utility or the error distribution is mis-specified, the QRE hypothesis

is substantially over-rejected with a moderate sample size (i.e., T = 2000). In most

scenarios, the rejection rates are close to 100%. This over-rejection issue is less of a

concern in small samples (i.e., T = 200). However, the mis-specification of either model

primitives still leads to a substantially higher rejection rate than our proposed method

(i.e., “Unknown Utility & Unknown Error”), except for the case of “Known Utility &

Logit Error” under the symmetric distribution. In this scenario, even when the Logit

formula is mis-specified, it correctly imposes the symmetry condition. In a small sample,

this correct shape restriction leads to a rejection ratio that is slightly lower than our test.

Figure 4 plots the averages of the estimated utility functions and the distribution

22The over-rejection of QRE in small samples is akin to the well-known problem of over-fitting. In
particular, the general choice probability structure in Equation (14) includes the bias parameter γ . When
QRE holds, these parameters are unnecessary to explain players’ behavior. However, if the sample size is
small, these parameters would fit idiosyncratic sample noise. This over-fitting problem then translates to
the over-rejection of QRE. Note that the benchmark specification (“Known Utility & Known Error”) also
exhibits a comparable over-rejection problem in small samples.
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functions across 1,000 Monte Carlo samples with their corresponding 90% confidence

intervals. It shows that with a moderate sample size, the model primitives can be reliably

and non-parametrically estimated.

Figure 4: Estimates of the Utility Function and the Distribution Function

Data Generated By Non-QRE Behavior: Symmetric Iterative Reasoning We next

generate data according to the standard Level-k model to assess the power of our test

to reject an incorrect hypothesis; that is, the type-2 error. Table 4 presents the rejection

rates when each player has the same level of sophistication in their reasoning (i.e., sym-

metric Level-k). Specifically, when T = 2000, the test obtains a rejection rate of almost

100% for any error distribution and any level of iterative reasoning. This suggests that

the proposed testing procedure possesses the power to reject an incorrect null hypothesis

with a moderate sample size. When the sample size is small (i.e., T = 200), the test’s

performance crucially depends on the level of iterative reasoning. In cases where players

are not sufficiently sophisticated (i.e., level-2 or below), our test exhibits lower rejec-
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tion rates compared to the benchmark “Known Utility & Known Error,” and these rates

fall below 50%. Intuitively, the choice probabilities of low-level players exhibit weak

dependence on m̃. For instance, a level-1 player’s decision is independent of the other

player’s monetary reward. In small samples, this limited dependence on m̃ could lead to

imprecise estimates and reduce the power of our test. In contrast, when players are more

sophisticated (i.e., level-3), our test rejects the incorrect null hypothesis of QRE almost

certainly, regardless of the shape of the error distribution.

Table 4: Rejection Rates of the Over-Identification Test of QRE (Symmetric Level-k Data)

Panel A: T = 200
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Level-1 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 89.2% 82.5% 62.1%
Unknown Utility & Unknown Error 62.0% 49.3% 25.9% 36.8% 26.0% 10.4%
Level-2 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 99.9% 99.3%
Unknown Utility & Unknown Error 47.0% 35.5% 17.6% 80.5% 70.2% 47.4%
Level-3 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 99.7% 98.7%
Unknown Utility & Unknown Error 100.0% 100.0% 100.0% 99.9% 99.6% 96.8%

Panel B: T = 2000
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Level-1 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Unknown Utility & Unknown Error 100.0% 100.0% 99.9% 99.3% 98.3% 94.1%
Level-2 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Unknown Utility & Unknown Error 99.3% 98.6% 94.9% 100.0% 100.0% 100.0%
Level-3 Reasoning Behavior
Known Utility & Known Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Unknown Utility & Unknown Error 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Data Generated By Non-QRE Behavior: Asymmetric Iterative Reasoning Our fi-

nal exercise considers players with heterogeneous levels of sophistication in their reason-

ing process (i.e., asymmetric Level-k) and studies the performance of the test for each

individual player’s quantal response behavior. Table 5 presents the test results.

32



Table 5: Rejection Rates of the Over-Identification Test of QRE (Asymmetric Level-k Data)

Panel A: T = 200
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Player 1 is Level-2 Reasoner & Player 2 is Level-1 Reasoner
Test of QRE 97.8% 96.2% 88.5% 96.8% 91.9% 80.4%
Test of Quantal Response for Player 1 15.7% 8.8% 1.6% 16.6% 8.1% 1.6%
Test of Quantal Response for Player 2 99.9% 99.9% 99.9% 100.0% 99.9% 98.8%
Player 1 is Level-3 Reasoner & Player 2 is Level-2 Reasoner
Test of QRE 100.0% 100.0% 100.0% 98.7% 96.8% 90.2%
Test of Quantal Response for Player 1 19.4% 11.1% 2.4% 19.9% 12.5% 3.0%
Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 96.1% 93.9% 82.4%

Panel B: T = 2000
Symmetric Distribution Asymmetric Distribution

Significance Level α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01
Player 1 is Level-2 Reasoner & Player 2 is Level-1 Reasoner
Test of QRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Test of Quantal Response for Player 1 12.5% 6.8% 1.2% 13.3% 6.9% 1.4%
Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Player 1 is Level-3 Reasoner & Player 2 is Level-2 Reasoner
Test of QRE 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Test of Quantal Response for Player 1 12.6% 7.0% 2.2% 14.1% 8.6% 2.1%
Test of Quantal Response for Player 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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In this exercise, Player 1 has the ability to perform an additional step of iterative

reasoning compared to Player 2. Therefore, the quantal response function in Equation

(3) holds for Player 1 and the rejection ratio for the test of this player’s quantal response

behavior should be close to the pre-specified significance level. As shown in Table 5, the

rejection rates align with the desired type-1 error rate with a moderate sample size (i.e.,

T = 2000). In a small sample (i.e., T = 200), the test tends to over-reject the hypothesis

of Player 1’s quantal response behavior due to small sample bias.

Player 2, on the other hand, is characterized by a lower level in their iterative reason-

ing and does not quantal respond to Player 1’s choice probability. Furthermore, players’

joint behaviors violate QRE. Therefore, our test should frequently reject two incorrect

null hypotheses: (i) quantal response behavior for Player 2, and (ii) QRE. As shown in

Table 5, the rejection rates for these two tests are consistently close to 100% across dif-

ferent sample sizes and error distributions. These results demonstrate the high statistical

power of our test.

5 Empirical Application: An Experimental Study

Our empirical application focuses on the matching pennies game as presented in Table

1 and maintains the same structure as Goeree and Holt (2001). In a previous study of

this game, Aguirregabiria and Xie (2021) do not reject QRE at the population level for

the row player using the data from Goeree and Holt (2001). Moreover, in a generalized

3×3 matching pennies game, Melo et al. (2019) do reject QRE at the population level,

but cannot reject QRE at the participant level for more than 50% of participants.

5.1 Experimental Design

Our design closely follows the Monte Carlo exercise in Section 4. In particular, we ex-

ogenously varied two variables, m1 and m2, that directly enter the utility function, one for
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each player. These variables were unique combinations drawn uniformly from a discrete

set of 20 values, M = {10,12,14, ...,48}. We randomized the order of these combina-

tions for a given experiment session. Each session was comprised of 20 participants

who were allocated to two separate matching groups, and player roles were assigned.

Throughout the experiment, each participant maintained their player role and remained

in their group. To ensure efficient data collection, each group played, in total, 200 match-

ing pennies games with varying monetary payoffs and with random rematching to mute

potential order effects. Thus, in a given experiment session with 20 participants we col-

lected data using |M|2 = 202 = 400 unique monetary payoff combinations.

Figure 5 visualizes the experimental implementation of the bimatrix matching pen-

nies game, where the variables m1 and m2 were exogenously varied and changed in each

round (in this example, m1 = 22 and m2 = 18). To create a more natural and intuitive

interface, we displayed one 2× 2 matrix for each player separately as in Halevy et al.

(2023). The first matrix represents player 1’s monetary payoffs, and the second matrix

represents player 2’s monetary rewards, respectively.

Figure 5: Matching Pennies Game – Experimental Implementation

To improve participants’ experience and to assist in selecting an action, we imple-

mented a highlighting tool that uses a yellow color. When a participant moves their
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mouse over a row in their matrix (“Your Earnings”), the action is highlighted in yellow

in both matrices: a row in their matrix, and a column in the opponent’s matrix (“Op-

ponent’s Earnings”). By left clicking the mouse over a row it remains highlighted, and

participants can unhighlight it by clicking their mouse again or clicking another row.

Similarly, when participants move their mouse over a row that corresponds to an action

of the opponent in “Opponent’s Earnings,” the row is highlighted in yellow and the cor-

responding column is highlighted in yellow in “Your Earnings.” Clicking the mouse over

the row keeps it highlighted, and clicking it again (or clicking another action) unhigh-

lights it.23

We conducted the experiment with students enrolled at the University of Vienna in

December 2022. In total, 100 participants were recruited from Vienna Center for Ex-

perimental Economics’ (VCEE) pool using ORSEE (Greiner, 2015). No participant was

allowed to participate in more than one session.

After reading the instructions, participants had to correctly answer three comprehen-

sion questions before starting the first task. If participants made a mistake in answering

a quiz question, they had to answer it correctly in order to move to the next question.

The experiment was programmed in oTree (Chen et al., 2016). For each participant,

we randomly selected one of the 200 matching pennies games that they had played and

rewarded them based on the earnings in this selected game. This design mutes poten-

tial hedging incentives. The average participant earned C19.18 ≈ $20.50, including a

show-up payment of C5, in a session that typically lasted around 70 minutes.

5.2 Experimental Data and Results

Table 6 reports the estimated coefficients from a reduced form Logit regression, where

we regress player i’s choice probability of action 0 on m1 and m2 . As would be expected,

an increase of mi strictly increases the expected utility of ai = 0 for player i, holding

23The interactive experimental interface can be accessed anytime upon request. Example screenshots
can be found in the appendix.
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the other player’s choice probability constant. Consequently, the rise of mi increases

pi(mi,m−i). This effect is known as the own-payoff effect and is a common feature in

experimental studies of matching pennies games (Ochs, 1995; Goeree et al., 2003). This

own-payoff effect is also salient and highly significant in our dataset. Moreover, if a

player knows that the other player experiences an own-payoff effect, the structure of the

matching pennies game implies that player 1’s choice probability of action 0 increases

in m2 (while player 2’s probability decreases in m1). Table 6 shows that such effect of

other-payoff is also sizable and statistically significant.

Table 6: Reduced Form Logit Regression of Player i’s Choice Probability Function

Player 1 Player 2

m1
0.027∗∗∗ −0.050∗∗∗

(0.002) (0.002)

m2
0.028∗∗∗ 0.052∗∗∗

(0.002) (0.002)

Constant
−1.016∗∗∗ −0.223∗∗∗

(0.079) (0.077)
Log-likelihood -6339.57 -6184.61
Observations 10,000

Notes: ∗, ∗∗, and ∗∗∗ represent significant at 10%, 5%, 1% significance
levels, respectively.

Our analysis starts with testing QRE and estimating model primitives under the con-

dition of QRE at the population level. We then test the hypothesis of quantal response

behavior for each participant in our experiment. The estimation and testing procedures

follow the process described in Subsection 4.2.

Population Level Analysis of the Heterogeneous QRE We allow each participant in

the experiment to have a heterogeneous error distribution but assume that they share the

same utility function. In this scenario, QRE at the population level can be described by a

representative player whose error distribution is non-parametrically specified (Golman,

2011). Due to this interpretation, one can view all participants with the same player role

as a single participant or player who makes T = 50×200 = 10,000 decisions. Notably,
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this treatment of heterogeneous QRE that allows different error distributions nests the

heterogeneous Logit QRE (Rogers et al., 2009; Golman, 2012) as a special case.

Table 7 presents the results of the test of QRE for four different specifications. The

first one follows the standard procedure in the literature, assuming the utility is given by

the monetary reward (i.e., risk-neutral participants) and the Logit choice probability. Ac-

cordingly, this specification is labeled as “Linear Utility & Logit Error”. The second and

third specifications relax one of the two restrictions and only allow one of the functions

to be unknown to the analyst. They are referred to as “Unknown Utility & Logit Error”

and “Linear Utility & Unknown Error”. The last specification is the one proposed in this

study—it allows both functions to be unobserved by the analyst (i.e., “Unknown Utility

& Unknown Error”). In each specification, all unknown functions are non-parametrically

specified.

Table 7: Chi-Square Statistic and p-Value of the Test of QRE (Population Level)

Linear Utility & Logit Error
χ2 = 245.68
p < 0.0001

Unknown Utility & Logit Error
χ2 = 181.53
p < 0.0001

Linear Utility & Unknown Error
χ2 = 94.74
p < 0.0001

Unknown Utility & Unknown Error
χ2 = 93.81
p < 0.0001

As shown in Table 7, the null hypothesis of QRE is rejected in our data under all

specifications. However, the results also deliver an important message: when fewer

restrictions are imposed on the utility and the distribution functions, QRE becomes more

difficult to reject. This is reflected in the decreasing statistic of the likelihood ratio test.

Notably, the test of QRE examines whether QRE perfectly matches the actual choice

probability pi(·). Therefore, the population-level rejection of QRE should not be mistak-

enly interpreted as contradicting the common finding in the literature that QRE generally
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fits the data well (Camerer, 2003; Crawford et al., 2013). In particular, the literature usu-

ally evaluates QRE based on whether its prediction is sufficiently close to the true choice

probability. Since we non-parametrically identify the model primitives under QRE, we

can also evaluate how close QRE is to the actual pi(·) under different specifications.

To perform such a comparison, we consider the following measure of normalized log-

likelihood:

Normalized Log-Likelihood =
LLModel −LLRandom

LLSample −LLRandom , (20)

where LLModel is the log-likelihood value for the corresponding model and LLRandom is

evaluated when each action is assumed to be chosen with equal probability, representing

the lower bound that any model should beat. LLSample is calculated using the smooth non-

parametric reduced form estimates p̂i(m), as shown in Equation (17). By construction, it

represents the maximum value of log-likelihood that any model could reach. As sample

size grows, our test will reject QRE as long as it does not achieve a perfect fit (of 100%).

In contrast, our estimation procedure allows us to evaluate the closeness of QRE to the

perfect fit.

Figure 6: Model Fitness
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Figure 6 plots the normalized log-likelihood values for different model specifica-

tions. As previously noted, even the simplest QRE (i.e., with Logit error and linear

utility) fits the data substantially better than NE with a non-parametric utility function.

This is because NE only predicts an other-payoff effect, while QRE predicts both own-

payoff and other-payoff effects (Table 6). Importantly, when the error distribution is

non-parametrically specified, the model fit substantially increases beyond 90% (the right

two bars on Figure 6). These specifications can be viewed as a population level analysis

of the heterogeneous QRE (Golman, 2011). As a benchmark, existing approaches which

impose the distributional assumption perform worse. Finally, Figure 7 plots the same

measure for an out-of-sample procedure that estimates model primitives for 50% of par-

ticipants and predicts on the remaining participants. Here again, the two specifications

with non-parametric error distributions achieve the best of out-of-sample fit. Conse-

quently, QRE explains much of the variation in participants’ behavior in this game.

Figure 7: Out of Sample Fitness

In Figure 8, we present the non-parametric estimates of model primitives under QRE.

We plot the estimated utility function with a 90% confidence interval (black dotted lines)

and compare it with the linear utility assumption (blue line). Our estimates suggest that
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participants are risk neutral when the monetary payoff is low or moderate. Only when

the reward is very high (i.e., above C40 ≈ $43) do we find risk aversion to be significant

at the 10% level.

Figure 8: Estimated Utility Function

Figure 9 plots the estimated P.D.F. for the error distribution with a 95% confidence

interval (black dotted lines) and compares it with the logistic distribution with the same

variance (blue line). This illustrates the strong rejection of the Logit choice probability.

Compared to the logistic distribution, participants tend to make errors of smaller magni-

tude. Moreover, the estimated distribution has a heavier tail, suggesting that participants

also make larger errors with non-negligible probability. In contrast, there is a smaller

probability of moderate mistakes.

While the estimated P.D.F. of ε̃i appears symmetric, it is not symmetric around 0. In

particular, the estimate of mean(ε̃i) is 0.080 and is highly significant at the 1%-level, with

a standard error of 0.020. Given the estimated utility function, this estimate of mean(ε̃i)

suggests that participants tend to over-estimate the reward of the action presented at the

top of the screen by around C3 ≈ $3.20, which is approximately 6% of the maximum

reward. Our non-parametric estimate is able to recover this sizable position effect, which
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Figure 9: Estimated P.D.F. for ε̃i

is usually assumed to be absent in existing applications of QRE.

Test of Quantal Response Behavior at the Participant Level Our second analysis

allows both the utility function and the error distribution to be heterogeneous across

participants. We aim to test whether each participant exhibits quantal response behavior

with respect to the other player’s actual choice probabilities. If this hypothesis holds

for each participant, we could interpret the data as being consistent with QRE featuring

heterogeneity in both the utility function and the distribution function.

Figure 10 presents the empirical C.D.F. for the p-value of the test statistic, with a

vertical line that represents statistical significance at the 5% level. Therefore, the inter-

section of the empirical C.D.F. and the vertical line shows the fraction of participants for

whom quantal response behavior is rejected at the 5% level.

Similar to the results at the population level, the test highlights a general trend: the

fewer restrictions imposed on the utility and the error distribution, the more likely it is

that QRE holds in the data. Under the assumption of a risk-neutral utility function and

a logistically distributed error, quantal response behavior is rejected for 70% of partic-

ipants. When only one of the two model primitives is restricted, the null hypothesis is
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Figure 10: Empirical C.D.F. of the p-Value of the Test of Quantal Response Behaviors

rejected for about 50% of participants. In contrast, with unknown and non-parametric

specifications of both functions, quantal response behavior is rejected for only 30% of

participants. Notably, this test at the participant level is conducted with a sample size of

T = 200, which may introduce small sample bias, as described in our Monte Carlo re-

sults (i.e., Table 5). Since this small sample bias tends to over-reject the quantal response

hypothesis, rather than reducing the power to reject incorrect hypotheses, these results

are more supportive of quantal response behavior than previous methods.

In summary, the quantal response hypothesis has a satisfactory statistical fit when

allowing for sufficiently flexible and heterogeneous utility and error distributions. How-

ever, when strong assumptions in terms of the functional form or homogeneity are im-

posed, QRE is strongly rejected. These results emphasize the importance of a flexible

and unknown specification of all model primitives. With this specification, the identifi-

cation results and the testable implication derived in this paper are particularly useful.
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6 Conclusion

This paper studies the falsifiability and identification of QRE when both the utility and

the error distribution are non-parametric functions. Making use of cross-game variation,

we first show that the error distribution and the utility function are non-parametrically

over-identified. This over-identification result implies a straightforward testing proce-

dure for QRE. The Monte Carlo experiment suggests that our test has sufficient power

to reject a false hypothesis. Moreover, when QRE holds in the data, our estimation proce-

dure can reliably recover both the utility and the distribution functions non-parametrically.

As shown by Golman (2011), the non-parametric error specification can be viewed as

a population level fit of QRE with heterogeneous error distributions across participants.

Previous studies have not exploited this interpretation because of a lack of identification

results. This paper fills this gap by providing a means to fit heterogeneous QRE at the

population level. In an experimental study of the matching pennies game, we find that

QRE with a non-parametric error distribution fits the data substantially better than previ-

ous methods, both in-sample and out-of-sample. This suggests substantial heterogeneity

in error distributions in our sample. Moreover, at the participant level, with a hetero-

geneous and non-parametric specification of the utility and the error distribution, the

quantal response hypothesis cannot be rejected for a majority of participants. However,

it is highly rejected with strong assumptions on functional form or homogeneity.

Our framework’s weak assumptions on the monetary payoff structures enable an an-

alyst to test QRE in a wide class of games, accommodating their various research objec-

tives. For instance, while this paper focuses on the matching pennies game (Table 1), our

method is equally applicable to other types of games, such as coordination games (Table

2). An important feature of our approach is that it enables an analyst to test the validity

of QRE both within and across game types. For instance, the analyst could design an

experiment where the payoff structure M is a union of Tables 1 and 2; this design allows

for testing whether QRE jointly holds in both matching pennies and coordination games.
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Our results build on the invariance assumption that each player’s error distribution

remains unchanged across games. Consequently, we focus on games with a fixed number

of players and actions. When players have different action sets across games, the joint

distribution of errors across actions will vary, and our results do not apply. However, with

some additional restrictions, it is possible to generalize our results. For instance, consider

a series of 2× 2 games and another series of 3× 3 games, with the common restriction

that errors are i.i.d. across actions (Goeree et al., 2020). Based on the results in this paper,

the analyst could first non-parametrically estimate the utility function and the marginal

error distribution using data from the 2×2 games. Under the i.i.d. restriction, these non-

parametric estimates then determine the set of predicted choice probabilities under QRE

for the 3×3 games.24 This result could then be used to test QRE by testing whether the

set of predicted probabilities contains the true choice probability. In a semi-parametric

specification, Xie (2018) shows that the above variations in the action sets could provide

extra information to test BNE, and equivalently QRE.

24If the analyst assumes that the marginal error distribution is invariant across games with different
number of actions, then the predicted choice probability is a singleton. Without this invariance assumption
on the marginal error distribution, the predicted choice probabilities would form a set, and this set is
sufficiently narrow (Goeree et al., 2020).
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Omitted Proofs

Proof of Proposition 1: Since p1, p2 ∈ Pi(m1
i ), there must exist two values of m−i—

denoted as m1
−i and m2

−i—such that pi(m1
i ,m1

−i) = p1 and pi(m1
i ,m2

−i) = p2. Evaluating

Equation (5) at these two values leads to the following equations:

F−1
i [pi(m1

i ,m
1
−i) = p1] = π̃i(m1

i ,a−i = 1)+ [π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · p−i(m1
i ,m

1
−i),

F−1
i [pi(m1

i ,m
2
−i) = p2] = π̃i(m1

i ,a−i = 1)+ [π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · p−i(m1
i ,m

2
−i).

(21)

Given that F−1
i (p1) and F−1

i (p2) are known by the analyst, the above system is a linear

system with two equations and two unknowns (i.e., π̃i(m1
i ,a−i = 0) and π̃i(m1

i ,a−i =

1)). Moreover, the fact that p1 ̸= p2 implies that F−1
i (p1) ̸= F−1

i (p2) and therefore

p−i(m1
i ,m1

−i) ̸= p−i(m1
i ,m2

−i). Consequently, the rank condition of the system by Equa-

tion (21) is satisfied and both π̃i(m1
i ,a−i = 0) and π̃i(m1

i ,a−i = 1) are point identified.

Fix mi at m1
i and only consider the variations of m−i. Equation (5) then becomes:

F−1
i [pi(m1

i ,m−i)]= π̃i(m1
i ,a−i = 1)+[π̃i(m1

i ,a−i = 0)− π̃i(m1
i ,a−i = 1)]· p−i(m1

i ,m−i).

(22)

1
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Since π̃i(m1
i ,a−i = 0) and π̃i(m1

i ,a−i = 1) have been identified and p−i(m1
i ,m−i) is

known by the analyst, Equation (22) directly identifies F−1
i (p) ∀p ∈ Pi(m1

i ) with the

variations provided by m−i. This completes the proof.

Proof of Proposition 3: Similar to the argument in the proof of Proposition 1, there ex-

ists one value m−i =m1
−i such that pi(m1

i ,m1
−i) = p1 given that p1 ∈Pi(m1

i ). Evaluating

Equation (5) at this realization (m1
i ,m1

−i) would imply the following relationship:

F−1
i [pi(m1

i ,m
1
−i)= p1] = π̃i(m1

i ,a−i = 1)+[π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)]· p−i(m1
i ,m

1
−i).

(23)

Since F−1
i (p1) and p−i(m1

i ,m1
−i) are known to the analyst and π̃i(m1

i ,a−i = 1) is normal-

ized to one, Equation (23) contains only one unknown π̃i(m1
i ,a−i = 0). Consequently,

this utility difference is identified. Given the identification of the utility differences,

Equation (22) then identifies F−1
i (p) ∀p ∈ Pi(m1

i ) due to the exogenous variation of

m−i. This completes the proof.

Proof of Proposition 4: To prove this proposition, it is suffice to prove that F−1
i (p1) is

identified at only one value p1. The identification of F−1
i (p) ∀p ̸= p1 simply follows

Proposition 3.

First consider Assumption 6(a) so that π̃i(m1
i ,a−i = 0) =−π̃i(m1

i ,a−i = 1). Plugging

this relationship into Equation (23), one could obtain the following equation:

F−1
i [pi(m1

i ,m
1
−i) = p1] = [1−2p−i(m1

i ,m
1
−i)] · π̃i(m1

i ,a−i = 1)

⇒ F−1
i (p1) = 1−2p−i(m1

i ,m
1
−i). (24)

The second line identifies the value of F−1
i (p1) and is the result of the normalization by

Assumption 5 such that π̃i(m1
i ,a−i = 1) = 1.

Next, suppose instead that Assumption 6(b) holds. We prove the case that m1
i (ai,a−i)=

m2
i (1−ai,a′−i) ∀ai and for a−i = a′−i = 1. Therefore, we have π̃i(m1

i ,a−i = 1)=−π̃i(m2
i ,a−i =

2



1). The proofs for the other two cases (i.e., a−i ̸= a′−i and a−i = a′−i = 0) follow a similar

argument and are suppressed.

Let us consider p1 ∈ Pi(m1
i )∩Pi(m2

i ). As described above, there must exist two

games—denoted as (m1
i ,m

1(1)
−i ) and (m2

i ,m
2(1)
−i )—such that pi(m1

i ,m
1(1)
−i )= pi(m2

i ,m
2(1)
−i )=

p1. When we evaluate these two games, Equation (5) then turns to:

F−1
i [pi(m1

i ,m
1(1)
−i ) = p1] = π̃i(m1

i ,a−i = 1)+ [π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · p−i(m1
i ,m

1(1)
−i )

F−1
i [pi(m2

i ,m
2(1)
−i ) = p1] = π̃i(m2

i ,a−i = 1)+ [π̃i(m2
i ,a−i = 0)− π̃i(m2

i ,a−i = 1)] · p−i(m2
i ,m

2(1)
−i )

=−π̃i(m1
i ,a−i = 1)+ [π̃i(m2

i ,a−i = 0)+ π̃i(m1
i ,a−i = 1)] · p−i(m2

i ,m
2(1)
−i ).

(25)

The last line of Equation (25) follows from the result that π̃i(m1
i ,a−i = 1)=−π̃i(m2

i ,a−i =

1). Solving Equation (25), one could identify π̃i(m1
i ,a−i = 0) = F−1

i (p1)−1

p−i(m1
i ,m

1(1)
−i )

+ 1 and

π̃i(m2
i ,a−i = 0) = F−1

i (p1)+1

p−i(m2
i ,m

2(1)
−i )

− 1. Next, consider another two games—denoted as

(m1
i ,m

1(2)
−i ) and (m2

i ,m
2(2)
−i )—such that pi(m1

i ,m
1(2)
−i ) = pi(m2

i ,m
2(2)
−i ) = p2 ∈ Pi(m1

i )∩

Pi(m2
i ). Since Pi(m1

i )∩Pi(m2
i ) includes an interval, we could always find such p2 ̸= p1.

Evaluating Equation (5) at the above two realizations implies the following equation:

F−1
i [pi(m1

i ,m
1(2)
−i ) = p2] = π̃i(m1

i ,a−i = 1)+ [π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · p−i(m1
i ,m

1(2)
−i )

F−1
i [pi(m2

i ,m
2(2)
−i ) = p2] =−π̃i(m1

i ,a−i = 1)+ [π̃i(m2
i ,a−i = 0)+ π̃i(m1

i ,a−i = 1)] · p−i(m2
i ,m

2(2)
−i ).

(26)

Since the terms on the left-hand side of the above two equations are equal, we could

equate them and plug in the identified values of π̃i(m1
i ,a−i = 0) and π̃i(m2

i ,a−i = 0).

This transformation then identifies the value of F−1
i (p1) as the following:

F−1
i (p1) =

2− [
p−i(m1

i ,m
1(2)
−i )

p−i(m1
i ,m

1(1)
−i )

+
p−i(m2

i ,m
2(2)
−i )

p−i(m2
i ,m

2(1)
−i )

]

p−i(m2
i ,m

2(2)
−i )

p−i(m2
i ,m

2(1)
−i )

− p−i(m1
i ,m

1(2)
−i )

p−i(m1
i ,m

1(1)
−i )

. (27)

3



It can be shown that the denominator of Equation (27) equals F−1
i (p2)+1

F−1
i (p1)+1

− F−1
i (p2)−1

F−1
i (p1)−1

.

Therefore, this denominator is different than zero provided that F−1
i (p1) ̸= F−1

i (p2).

Equation (27) then identifies F−1
i (p1) and completes the proof.
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In Proposition 5, we first show that our over-identification test includes all the testable

implications derived by Xie (2022).

Proposition 5. Suppose that Assumptions 1 to 4 hold. If Equation (7) is satisfied,

then the QRE restrictions in Equation (8) hold for any three pairs of games such that

pi(m1
i ,m

1(l)
−i ) = (m2

i ,m
2(l)
−i ) for l = 1,2,3 and pi(m1

i ,m
1(1)
−i ) ̸= pi(m1

i ,m
1(2)
−i ).

Proof. Recall the definition of Equation (6). Consider two distinct realizations of m−i,

denoted as m1(1)
−i and m1(2)

−i . When we individually substitute these realizations into

Equation (6) and subtract one from the other, we obtain the following equation:

F̂−1
i [pi(m1

i ,m
1(2)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]

=[π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · [p−i(m1
i ,m

1(2)
−i )− p−i(m1

i ,m
1(1)
−i )]. (28)

By a similar argument, for realizations m1(1)
−i and m1(3)

−i , we could derive the following:

F̂−1
i [pi(m1

i ,m
1(3)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]

=[π̃i(m1
i ,a−i = 0)− π̃i(m1

i ,a−i = 1)] · [p−i(m1
i ,m

1(3)
−i )− p−i(m1

i ,m
1(1)
−i )]. (29)

1
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Dividing Equation (29) by Equation (28) would imply the following ratio:

F̂−1
i [pi(m1

i ,m
1(3)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]

F̂−1
i [pi(m1

i ,m
1(2)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]
=

p−i(m1
i ,m

1(3)
−i )− p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )− p−i(m1

i ,m
1(1)
−i )

.

(30)

Repeating the above steps for another realization m2
i , one could derive a similar equation:

F̂−1
i [pi(m2

i ,m
2(3)
−i )|m2

i ]− F̂−1
i [pi(m2

i ,m
2(1)
−i )|m2

i ]

F̂−1
i [pi(m2

i ,m
2(2)
−i )|m2

i ]− F̂−1
i [pi(m2

i ,m
2(1)
−i )|m2

i ]
=

p−i(m2
i ,m

2(3)
−i )− p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )− p−i(m2

i ,m
2(1)
−i )

.

(31)

Let us consider any three pairs of games that satisfy the condition of equal choice proba-

bility; for instance, pi(m1
i ,m

1(l)
−i ) = pi(m2

i ,m
2(l)
−i ) for l = 1,2,3. A combination of Equa-

tions (30) and (31) would imply the following relationship:

p−i(m1
i ,m

1(3)
−i )− p−i(m1

i ,m
1(1)
−i )

p−i(m1
i ,m

1(2)
−i )− p−i(m1

i ,m
1(1)
−i )

=
F̂−1

i [pi(m1
i ,m

1(3)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]

F̂−1
i [pi(m1

i ,m
1(2)
−i )|m1

i ]− F̂−1
i [pi(m1

i ,m
1(1)
−i )|m1

i ]

=
F̂−1

i [pi(m2
i ,m

2(3)
−i )|m2

i ]− F̂−1
i [pi(m2

i ,m
2(1)
−i )|m2

i ]

F̂−1
i [pi(m2

i ,m
2(2)
−i )|m2

i ]− F̂−1
i [pi(m2

i ,m
2(1)
−i )|m2

i ]

=
p−i(m2

i ,m
2(3)
−i )− p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )− p−i(m2

i ,m
2(1)
−i )

. (32)

The first and third lines in Equation (32) are direct results of Equations (30) and (31).

The second line follows the equal choice probability condition and Equation (7) so that

F̂−1
i [pi(m1

i ,m
1(l)
−i )|m1

i ] = F̂−1
i [pi(m2

i ,m
2(l)
−i )|m2

i ] for l = 1,2,3. This completes the proof.

Following Proposition 5, if Xie (2022)’s testable implication is violated, our over-

identification test in Proposition 2 would also reject QRE. Importantly, the reverse is not

true since our test includes more restrictions than Xie (2022) and has higher statistical

power. Specifically, the structure of monetary payoffs often implies additional restric-

tions on players’ utilities across games or action profiles. As shown in Subsection 3.3,

each player’s utility function is non-parametrically identified. Therefore, these utility

2



restrictions become testable implications of QRE in addition to the ones derived by Xie

(2022). To better describe these results, we extend Assumption 6 to include another

structural property of the matching pennies game presented in Table 1. The property,

indexed as Assumption 6(c), preserves player i’s payoffs for one of the other player’s

actions and varies player i’s payoffs when player −i chooses the other action.

Assumption 6. (c) For each player i, there exist two realizations of mi—denoted as m1
i

and m2
i —such that m1

i (ai,a−i) = m2
i (ai,a−i) ∀ai and for some a−i.

The strict monotonicity of the utility function and each condition in Assumption 6

implies different testable implications of QRE. Proposition 6 shows that these implica-

tions are included in our over-identification test.

Proposition 6. Suppose that Assumptions 1 to 4 hold, then Equation (7) implies the

following testable restrictions of QRE:

(a) ∀mi ∈Mi:

Sign
{(−1)a−i p−i(1−a−i|mi,m2

−i)F
−1
i [pi(mi,m1

−i)]+(−1)1−a−i p−i(1−a−i|mi,m1
−i)F

−1
i [pi(mi,m2

−i)]

p−i(mi,m1
−i)− p−i(mi,m2

−i)

}
= Sign[mi(ai = 0,a−i)−mi(ai = 1,a−i)], ∀m1

−i,m
2
−i ∈M−i and ∀a−i. (33)

(b) ∀m1
i that satisfies Assumption 6(a):

1−2p−i(m1
i ,m1

−i)

1−2p−i(m1
i ,m2

−i)
=

F−1
i [pi(m1

i ,m1
−i)]

F−1
i [pi(m1

i ,m2
−i)]

, ∀m1
−i,m

2
−i ∈M−i. (34)

(c) For each pair of m1
i and m2

i that satisfies Assumption 6(b):

(−1)a−i p−i(1−a−i|m1
i ,m

1(2)
−i )F−1

i [pi(m1
i ,m

1(1)
−i )]+(−1)1−a−i p−i(1−a−i|m1

i ,m
1(1)
−i )F−1

i [pi(m1
i ,m

1(2)
−i )]

p−i(m1
i ,m

1(1)
−i )− p−i(m1

i ,m
1(2)
−i )

=

−
(−1)a′−i p−i(1−a′−i|m2

i ,m
2(2)
−i )F−1

i [pi(m2
i ,m

2(1)
−i )]+(−1)1−a′−i p−i(1−a′−i|m2

i ,m
2(1)
−i )F−1

i [pi(m2
i ,m

2(2)
−i )]

p−i(m2
i ,m

2(1)
−i )− p−i(m2

i ,m
2(2)
−i )

,

∀m1(1)
−i ,m1(2)

−i ,m2(1)
−i ,m2(2)

−i ∈M−i. (35)
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(d) Consider each pair of m1
i and m2

i that satisfies both Assumption 6(c) and the

condition that Pi(m1
i )∩Pi(m2

i ) includes an interval. Then for any two pairs of games

such that pi(m1
i ,m

1(l)
−i ) = pi(m2

i ,m
2(l)
−i ) for l = 1,2, we have:

p−i(m1
i ,m

1(1)
−i )

p−i(m1
i ,m

1(2)
−i )

=
p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )

. (36)

Proof. For any mi, consider two realizations denoted as m1
−i and m2

−i. Evaluating the

definition of F̂−1
i (p|mi) by Equation (6) at these two realizations leads to the following

system:

F−1
i [pi(mi,m1

−i)] = π̃i(mi,a−i = 1)+ [π̃i(mi,a−i = 0)− π̃i(mi,a−i = 1)] · p−i(mi,m1
−i)

F−1
i [pi(mi,m2

−i)] = π̃i(mi,a−i = 1)+ [π̃i(mi,a−i = 0)− π̃i(mi,a−i = 1)] · p−i(mi,m2
−i).

(37)

In the left-hand side of this system, we replace F̂−1
i (p|mi) by F−1

i (p). This follows the

implication by Equation (7) such that F̂−1
i (p|mi) = F−1

i (p) ∀mi. This linear system by

Equation (37) identifies utility difference π̃i(·) as the following expression:

π̃i(mi,a−i) (38)

=
(−1)a−i p−i(1−a−i|mi,m2

−i)F
−1
i [pi(mi,m1

−i)]+(−1)1−a−i p−i(1−a−i|mi,m1
−i)F

−1
i [pi(mi,m2

−i)]

p−i(mi,m1
−i)− p−i(mi,m2

−i)
.

Note that there always exist m1
−i and m2

−i such that the denominator in the second line is

non-zero. This is because p−i(mi,m−i) varies with m−i.

The property of the utility function and the structure of monetary payoffs impose

restrictions on π̃i(·). It is these restrictions that lead to Proposition 6. Specifically, the

strict increasing property of ui(m) implies that π̃i(mi,a−i) and [mi(ai = 0,a−i)−mi(ai =

1,a−i)] have the same sign. It leads to Proposition 6(a). Assumption 6(a) suggests that
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π̃i(m1
i ,a−i) = −π̃i(m1

i ,1− a−i). It leads to Proposition 6(b). Assumption 6(c) restricts

π̃i(m1
i ,a−i) =−π̃i(m2

i ,a
′
−i) and implies Proposition 6(c).

To prove Proposition 6(d), assume that Assumption 6(c) holds for the action a−i = 1.

The proof for the case that a−i = 0 follows a similar argument and is suppressed. By

transforming the system by Equation (37), we obtain the following relationship:

p−i(mi,m1
−i)

p−i(mi,m2
−i)

=
F−1

i [pi(mi,m1
−i)]− π̃i(mi,a−i = 1)

F−1
i [pi(mi,m2

−i)]− π̃i(mi,a−i = 1)
. (39)

Now consider two pairs of games such that pi(m1
i ,m

1(l)
−i ) = pi(m2

i ,m
2(l)
−i ) for l = 1,2, we

then obtain Proposition 6(d) through the following steps:

p−i(m1
i ,m

1(1)
−i )

p−i(m1
i ,m

1(2)
−i )

=
F−1

i [pi(m1
i ,m

1(1)
−i )]− π̃i(m1

i ,a−i = 1)

F−1
i [pi(m1

i ,m
1(2)
−i )]− π̃i(m1

i ,a−i = 1)

=
F−1

i [pi(m2
i ,m

2(1)
−i )]− π̃i(m2

i ,a−i = 1)

F−1
i [pi(m2

i ,m
2(2)
−i )]− π̃i(m2

i ,a−i = 1)

=
p−i(m2

i ,m
2(1)
−i )

p−i(m2
i ,m

2(2)
−i )

. (40)

The first and third lines follow directly from Equation (39). The second line is due to the

equal choice probability condition that pi(m1
i ,m

1(l)
−i ) = pi(m2

i ,m
2(l)
−i ) and the implication

of Assumption 6(c) such that π̃i(m1
i ,a−i = 1) = π̃i(m2

i ,a−i = 1). This completes the

proof.

Given Proposition 1 that identifies F−1
i (·), all equations in Proposition 6 are then

restrictions on known functions of players’ choice probabilities and are therefore testable.

In Proposition 6, restriction (a) exploits only the strict monotonicity of ui(m) and

applies to any payoff structure and any type of games. In contrast, restrictions (b) to (d)

focus on matching pennies games. In addition, restrictions (a) to (c) do not require the

equal choice probability condition. Restriction (d) requires this condition but only for

two pairs of games as opposed to the three pairs in Xie (2022). Therefore, all restrictions
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in Proposition 6 are additional testable implications in our over-identification test, but

they are excluded from Xie (2022).

Even though Proposition 6(b) to (d) focuses on matching pennies games, other types

of games have their own monetary payoffs structure. These structural properties can be

exploited to derive additional testable restrictions of QRE. For instance, consider the co-

ordination game illustrated in Table 2. Assumption 6(b) holds when the analyst considers

two values m1
i = 0 and m2

i = 15. Therefore, Proposition 6(c) applies. Moreover, in this

coordination game, the payoff of ai = 0 does not depend on the other player’s action. It

implies that π̃i(mi,a−i = 0)− π̃i(mi,a−i = 1) = ui(15)−ui(0), which is independent of

mi. Consequently, the following is a natural testable implication of QRE:

F−1
i [pi(mi,m1

−i)]−F−1
i [pi(mi,m2

−i)]

p−i(mi,m1
−i)− p−i(mi,m2

−i)
is independent of mi, ∀m1

−i,m
2
−i. (41)

In another section of this online appendix (i.e., Section “Generalizations and Ex-

tensions”), we consider an experiment that varies at least two action profiles’ payoffs

without further restrictions on the payoff structures. For instance, it does not require As-

sumption 6. This general structure includes common types of games as special cases. In

that section, we demonstrate that there are additional testable restrictions of QRE.

Even though experimental data typically provides additional structure to test QRE,

the concrete form of the restrictions depends on the structure of M and is therefore ap-

plication specific. While it can be cumbersome to derive and list all such restrictions

for a given application, these additional testable restrictions are included in our over-

identification test as shown in Proposition 6, and therefore the analyst only needs to test

the simple condition in Equation (7).
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We consider a transformed random error ˆ̃εi =
1
λ

ε̃i that scales up the standard deviation

of ε̃i by 1
λ

, where 0 < λ < ∞. Under this scaled error, player i’s choice probability is

characterized as:

pi(m) = Fi
{

λ
[
EUi(mi,ai = 0,bi(m))−EUi(mi,ai = 1,bi(m))

]}
, (42)

where bi(m) represents player i’s belief about the probability that player −i will choose

a−i = 0. QRE places the restriction that bi(m) = p−i(m) so that Equation (42) turns to

the quantal response function by Equation (3) when λ = 1. Moreover, Equation (42) also

includes Level-k behaviors when bi(m) is the belief of the level-k player.

Equation (42) indicates that as λ increases, or equivalently as Var(ε̃i) decreases,

player i will choose ai = 0 more (less) frequently if such an action has a higher (lower)

expected utility than ai = 1. Furthermore, when λ → ∞, player i will unambiguously

choose the action that maximizes the expected utility, provided that Fi(−∞) = 0 and

Fi(∞) = 1. Conversely, as λ → 0, player i will choose ai = 0 with probability Fi(0). If

the analyst imposes the restriction that Median(ε̃i) = 0 so that Fi(0) = 1/2, then player i

simply randomizes each action with equal probability.

Next, consider the matching pennies game in Table 1 and suppose that the analyst

imposes the QRE restrictions. Given the normalization that the utility of the lowest

1
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payoff (i.e., m = 8) is zero, each player’s pi(m) is determined by the following equation

system:

p1(m1,m2) = F1
{

λ
[
(u1(m1)+u1(16)) · p2(m1,m2)−u1(16)

]}
,

p2(m1,m2) = F2
{

λ
[
u2(m2)− (u2(m2)+u2(16)) · p1(m1,m2)

]}
. (43)

Suppose that both ui(m) and Fi(ε̃i) are continuously differentiable, then taking deriva-

tive with respect to (m1,m2) on both sides of Equation (43) would imply the following

comparative statics under the QRE framework:

∂ p1(m)

∂m1
=

λ · f1(λ · ẼU1) ·u′1(m1) · p2(m)

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

∂ p1(m)

∂m2
=

λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] ·u′2(m2) · [1− p1(m)]

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

∂ p2(m)

∂m1
=

−λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) ·u′1(m1) · [u2(m2)+u2(16)] · p2(m)

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
< 0,

∂ p2(m)

∂m2
=

λ · f2(λ · ẼU2) ·u′2(m2) · [1− p1(m)]

1+λ 2 · f1(λ · ẼU1) · f2(λ · ẼU2) · [u1(m1)+u1(16)] · [u2(m2)+u2(16)]
> 0,

(44)

where fi(·) is the P.D.F. of ε̃i and ẼU i is the difference between the expected utilities

of actions 0 and 1. Moreover, both pi(m) and ẼU i are evaluated at the QRE conditions.

The directions of the own-payoff effect and the other-payoff effect, as shown in Equation

(44), are intuitive and are consistent with the reduced form results in Table 6. Moreover,

Equation (44) also provides insights into the comparative statics of these effects with

respect to λ . When λ → 0, both ∂ pi(m)
∂mi

and ∂ pi(m)
∂m−i

converge to zero. These diminishing

own-payoff and other-payoff effects are consistent with the property that each player

randomizes each action with equal probability when λ → 0. Conversely, consider the

other extreme that λ → ∞. Since the expression of ∂ pi(m)
∂mi

has the term λ on its nominator

and the term λ 2 in the denominator, the effect of own payoff mi on pi(m) decreases in the
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order of λ . Conversely, the expression of ∂ pi(m)
∂m−i

has the term λ 2 in both its nominator

and denominator. Therefore, the effect of the other player’s payoff m−i on pi(m) is

order-invariant with respect to λ . As λ → ∞, the own-payoff effect disappears while the

other-payoff effect remains, as predicted in Nash Equilibrium.

Equation (45) offers another perspective for interpreting the comparative statics of

the other-payoff effect. In QRE, player i anticipates that player −i’s payoff m−i has

a diminishing impact (in order of λ ) on player −i’s choice probability p−i(m). This

diminishing impact is entirely offset by the effect of p−i(m) on pi(m), which grows

in the order of λ as shown in Equation (45). Consequently, the other-payoff effect,

quantified by ∂ pi(m)
m−i

, is order-invariant with respect to λ .

∂ p1(m)

∂ p2(m)
= λ f1(λ ẼU1)[u1(m1)+u1(16)],

∂ p2(m)

∂ p1(m)
=−λ f2(λ ẼU1)[u2(m2)+u2(16)]. (45)

The structure of the matching pennies game in Table 1 also implies an interesting feature

under Level-k behaviors. Specifically, when mi < 16 (mi > 16), the level-1 player would

obtain a strictly lower (higher) expected utility of action 0 than action 1. Therefore, as

λ → ∞, the level-1 player will choose ai = 0 with probability 0 (1). Due to the hierarchy

of beliefs, players with higher types would also choose one of the actions with certainty,

and such a choice is independent of players’ risk preference. In summary, under level-k

models, the effect of players’ risk preference parameter ν on their behaviors vanishes in

the limiting case as λ → ∞ or λ → 0.25

Figures 11 to 14 plot pi(mi,m−i) for both players in our Monte Carlo exercise. These

figures aim to illustrate how the value of Var(ε̃i) will affect each player’s behavior under

various models, including QRE and Level-k with k ∈ {1,2,3}. We consider three scenar-

ios: (1) original value of Var(ε̃i) in our Monte Carlo exercise, (2) doubling the value of

25Note that when λ → 0, each player randomizes their actions with equal probability, regardless of
their expected utilities.
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Var(ε̃i), and (3) the limiting case where Var(ε̃i)→ 0. Clearly, these figures demonstrate

the substantial impact of Var(ε̃i) on each player’s behavior.

Figure 11: Players’ Choice Probabilities: QRE Behavior

Figure 12: Players’ Choice Probabilities: Level-1 Reasoning Behavior
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Figure 13: Players’ Choice Probabilities: Level-2 Reasoning Behavior

Figure 14: Players’ Choice Probabilities: Level-3 Reasoning Behavior
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Games with More Players and / or More Actions

This section extends the results in the main text to a general multinomial choice game

with N ≥ 2 players. We use letters i and j to denote a single player. Letter −i represents

all players other than i. Each player i simultaneously chooses an action, denoted as ai,

from their action set Ai = {0,1, · · · ,Ki}. The number of actions (i.e., Ki + 1 ≥ 2) is

unrestricted and could be heterogeneous across players. Moreover, let a = (ai,a−i) ∈

A = ×N
j=1A j be an action profile of this game, where a−i = (a1, · · · ,ai−1,ai+1, · · · ,aN)

is the decision profile made by all players other than i. In an experiment, player i will

receive a monetary payoff mi(a), in the unit of experimental currency, when a is the

realized outcome. Consequently, given the utility function ui(m), player i would obtain

a utility ui[mi(a)] for the profile a.

Recall that, as described in the main text, the monetary reward mi(a) is a control

variable in the econometric model. This variable has a support Mi(a) ⊂ R. Further-

more, define mi as a ∏ j(K j + 1)× 1 vector, and each element in this vector represents

player i’s monetary payoff of the corresponding action profile. Naturally, the vector

m = (m′
1, · · · ,m′

N)
′ then summarizes the rewards across profiles and across players. In

addition, we use p−i(a−i|m) to denote the probability that the profile a−i is chosen by all

1
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players other than i given m. Similarly, p−i(m) is a ∏ j ̸=i(K j +1)×1 vector that consists

of the probability of each profile a−i. With these notations, the function of player i’s

expected utility for action ai = k is expressed as:

EUi[mi,ai = k,p−i(m)] = ∑
a−i

ui[mi(ai = k,a−i)] · p−i(a−i|m). (46)

In this game with potentially more than two actions, player i’s random perturbations

extend to a (Ki+1)×1 vector denoted as ϵi = (εi(0),εi(1), · · · ,εi(Ki))
′. Specifically, this

vector of errors follows a joint C.D.F. represented by Γi(ϵi). Moreover, each element in

this vector, denoted as εi(ai), represents player i’s calculation error when evaluating the

expected utility of the corresponding action. Due to the perturbations of these mistakes,

player i will choose ai = k if and only if

EUi[mi,ai = k,p−i(m)]+ εi(k)≥ EUi[mi,ai = k′,p−i(m)]+ εi(k′), ∀k′ ̸= k. (47)

Define pi(m) =
(

p(ai = 1|m), p(ai = 2|m), · · · , p(ai =Ki|m)
)′ as a Ki×1 vector that

includes player i’s choice probability of each action. Note that since the sum of probabil-

ities of all actions equals 1, the choice probability of the base action ai = 0 is suppressed

in the vector pi(m). Cautiously, our treatment of the vector p−i(m) is slightly different

as this vector consists of the probability of every action profile, including the base pro-

file a−i = 0. This slight distinction in the treatment of pi(m) and p−i(m) simplifies the

presentation and proofs of our results.

Under QRE, players’ decisions are independent conditional on m. Therefore, the

joint choice probabilities p−i(m) for all players other than i are determined solely by the

individual choice probabilities p j(m) for each player j ̸= i. For instance, p−i(a−i|m) =

∏ j ̸=i p j(a j|m). If we interpret QRE as BNE in an incomplete information game where ϵi

represents player i’s private information, the above conditional independence arises from

the assumption of independent private information across players (i.e., ϵi ⊥ ϵ j ∀i ̸= j).
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In incomplete information games, when corr(ϵi,ϵ j) ̸= 0, player i’s private information

becomes informative about player j’s payoffs and potential decisions. Therefore, each

player should adjust their strategies based on their private information, leading to condi-

tional correlated strategies across players. However, within the QRE framework, where

ϵi is viewed as player i’s mistakes rather than private information, it raises an issue for

the above channel of correlated actions. Specifically, if player i’s strategy depends on the

value of ϵi, they should be able to distinguish actual utility and calculation errors. How-

ever, if such a distinction is clear, player i should not make any mistakes. Due to this

contradiction, we are not aware of any studies in the framework of QRE that consider ϵi

to be correlated across players.

In this general multinomial choice game, we modify our assumptions in the 2× 2

game as presented in the main text. These modified assumptions are listed below.

Assumption 1’. Each player i’s utility function ui(m) is bounded. Moreover, it is strictly

increasing and continuously differentiable in m.

Assumption 2’. For each player i, let Â(i) denote the set of action profiles for which the

outcome variable has exogenous variations conditional on player i’s outcome variables

of other profiles and other players’ outcome variables. In other words, ∀a ∈ Â(i), mi(a)

has exogenous variations conditional on mi(a′) ∀a′ ∈ A and ∀m−i ∈ M−i. We assume

that Â(i) consists of at least two distinct elements and ∪a∈Â(i)Mi(a) =∪a∈AMi(a). This

union is an interval that could be either open or closed.

Assumption 3’. (a) Γi(ϵi) has a positive and continuous density function on RKi+1, ∀i.

(b) Γi(ϵi) is independent of (mi,m−i), ∀i.

Assumption 4’. For each player i, the function of choice probabilities pi(m) varies

with both mi and m−i. Moreover, pi(m) is continuously differentiable for almost every

m ∈M. If there are values of m for which pi(m) is not continuously differentiable, the

total number of these discontinuous points is finite.
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Assumption 5’. For each player i, there exists a value of the outcome variable, denoted

as m1
i ∈ ∪a∈Â(i)Mi(a), such that u′i(m

1
i ) = 1.

Assumptions 1’ and 4’ are slightly stronger than Assumptions 1 and 4. These two

modified assumptions require the utility function ui(m) and the choice probability func-

tion pi(m) not only to be continuous but also to be differentiable. This differentiation

simplifies the proofs in this general multinomial choice game with N ≥ 2 players. More-

over, due to the expanded space of action profiles, Assumption 2’ requires the analyst

to exogenously vary the monetary payoffs of at least two action profiles within each

player. This is in contrast to most of the identification results in 2×2 games, where the

exogenous variation of a single profile’s payoff suffices.

Assumption 3’(a) and Assumption 3’(b) are standard regularity and invariance con-

ditions for the error distributions, adapted for games with more actions. These conditions

allow for general error structures. Specifically, the error of each action could follow a

heterogeneous marginal distribution and exhibit arbitrary correlation with the error of

another action.

Assumption 5’ is an alternative but equivalent scale normalization compared to As-

sumption 5. Specifically, consider the affine transformation ui(m) = c+ β ûi(m), As-

sumption 5’ simply transforms ûi(m) to its equivalent form by setting β = 1
û′i(m

1
i )

. Since

most of the proofs in this generalization are based on derivatives, it is convenient to

normalize the marginal utility as in Assumption 5’.

In discrete choice models, the decision rule by Equation (47) implies the following

mapping between player i’s expected utility differences and their choice probabilities:

pi(m) = Fi[ẼUi(mi,p−i(m))], (48)

where ẼUi(mi,p−i(m)) is a Ki ×1 vector that represents the difference in expected util-

ities for player i. In particular, the kth element of this vector, denoted as ẼU i[mi,ai =

k,p−i(m)], is defined as EUi[mi,ai = k,p−i(m)]−EUi[mi,ai = 0,p−i(m)]. As standard
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in discrete choice models, these differences of expected utilities completely determine

player i’s choice probabilities (Train, 2009). This relationship can be represented by the

mapping Fi : RKi → int(∆Ki), where int(∆Ki) denotes the interior of Ki-dimensional sim-

plex. The kth element in this mapping, denoted as Fi,k(·), then represents the resulting

choice probability of action ai = k. Under Assumption 3’(a), the mapping Fi(·) is bijec-

tive (Norets and Takahashi, 2013; Sørensen and Fosgerau, 2022). Moreover, Hotz and

Miller (1993) show that Fi(·) is differentiable.

In this general multinomial choice game with N ≥ 2 players, QRE is defined by a

fixed-point condition, as summarized by Definition 1’.

Definition 1’. The vector
(
p1(m)′,p2(m)′, · · · ,pN(m)′

)
denotes the QRE choice proba-

bilities if and only if the following condition holds:

pi(m) = Fi[ẼUi(mi,p−i(m))], ∀i and m ∈M. (49)

For any m ∈ M, if there are multiple vectors that satisfy Equation (49) (i.e., multiple

QRE), there exists a mechanism that selects one of the vectors / equilibria.

In this section, we first prove that player i’s utility function is non-parametrically

identified. We then exploit this result to show the over-identification of Fi(·) and the

testable implication of QRE.

Proposition 7. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold, then the

derivative of the utility function u′i(m) is point identified ∀m ∈ ∪aMi(a) and ∀i.

Proof. Under Assumption 2’, let a′ = (a′i,a
′
−i) ̸= a′′ = (a′′i ,a

′′
−i) be the two action profiles

in the set Â(i). We assume that a′i ̸= 0 and a′′i ̸= 0. This is without loss of generality since

the analyst could always relabel player i’s actions. As described above, Assumptions 1’,

3’, and 4’ imply that every function in Equation (49) is differentiable with respect to their

arguments. Consequently, we could take derivative on both sides of Equation (49) and
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obtain the following relationship:

∂pi(m)

∂mi(a′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′)
+

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi)

∂p−i(m)

∂mi(a′)
,

∂pi(m)

∂mi(a′′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′′)
+

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi)

∂p−i(m)

∂mi(a′′)
.

(50)

Note that Π̃i(mi) is a Ki ×∏ j ̸=i(K j +1) matrix whose element in cell (ai,a−i) is repre-

sented by π̃i(mi,ai,a−i) = ui[mi(ai,a−i)]−ui[mi(ai = 0,a−i)].

Equation (49) suggests that pi(m) could be alternatively represented as pi(mi,p−i(m)).

This equivalent form could be consistently estimated from choice data, due to the con-

sistent estimation of p−i(m) as described in the main text. Consequently, we could take

derivative for this equivalent form and obtain:

∂pi(mi,p−i(m))

∂p′
−i(m)

=
∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))
Π̃i(mi). (51)

Substituting Equation (51) into Equation (50) leads to:

∂pi(m)

∂mi(a′)
− ∂pi(mi,p−i(m))

∂p′
−i(m)

∂p−i(m)

∂mi(a′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′)
,

∂pi(m)

∂mi(a′′)
− ∂pi(mi,p−i(m))

∂p′
−i(m)

∂p−i(m)

∂mi(a′′)
=

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a′′)
.

(52)

Since each player’s choice probability can be consistently estimated, the terms on the

left-hand side of Equation (52) are known to the analyst. Consequently, the terms on the

right-hand side are identified.

Consider an arbitrary a = (ai,a−i) where ai ̸= 0. The structure of expected utilities
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implies the following expression:

∂Fi[ẼUi(mi,p−i(m))]

∂ ẼUi(mi,p−i(m))

∂ ẼUi(mi,p−i(m))

∂mi(a)
=



∂Fi,1[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)

∂Fi,2[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)

...
∂Fi,Ki [ẼUi(mi,p−i(m))]

∂ ẼU i(mi,ai,p−i(m))
u′i[mi(a)]p−i(a−i|m)


(53)

Substituting Equation (53) into Equation (52) implies that the terms ∂Fi,k(ẼUi)

∂ ẼU i(·,a′i)
u′i[mi(a′)]p−i(a′−i|m)

and ∂Fi,k(ẼUi)

∂ ẼU i(·,a′′i )
u′i[mi(a′′)]p−i(a′′−i|m) are identified for each k. It further implies the follow-

ing result:

∂Fi,a′′i
[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,a′i,p−i(m))
u′i[mi(a′)]p−i(a′−i|m)

∂Fi,a′i
[ẼUi(mi,p−i(m))]

∂ ẼU i(mi,a′′i ,p−i(m))
u′i[mi(a′′)]p−i(a′′−i|m)

=
u′i[mi(a′)]p−i(a′−i|m)

u′i[mi(a′′)]p−i(a′′−i|m)
is identified. (54)

The equality of Equation (54) follows the results in discrete choice models such that
∂Fi(ẼUi)

∂ ẼUi(·)
can be seen as the hessian matrix of the social welfare function (Sørensen and

Fosgerau, 2022). The social welfare function is strictly convex. Therefore, the ma-

trix ∂Fi(ẼUi)

∂ ẼUi(·)
is symmetric and positive definite. This symmetry implies that

∂Fi,a′′i
(·)

∂ ẼU i(·,a′i)
=

∂Fi,a′i
(·)

∂ ẼU i(·,a′′i )
and can be canceled out in Equation (54). Moreover, each term in the denom-

inator is strictly positive so that the ratio is well defined. In particular,
∂Fi,a′i

(·)

∂ ẼU i(·,a′′i )
> 0

due to the strictly positive density in Assumption 3’(a); u′i(·)> 0 due to the strict mono-

tonicity as per Assumption 1’; p−i(a′′−i|m)> 0 due to the full support condition of ϵi in

Assumption 3’(a).

Equation (54) identifies u′i(m
′)

u′i(m
′′) for any m′, m′′ ∈ ∪a∈Â(i)Mi(a) = ∪a∈AMi(a). As-

sumption 5’ normalizes the scale of u′i(m
1
i ) at one arbitrary value m1

i . This normalization

then identifies u′i(m) ∀m ∈ ∪a∈AMi(a) and completes the proof.

Proposition 7 identifies the marginal utility u′i(m) and consequently identifies the

utility function in the class of ui(m)+ c. As in the main text, when the analyst considers
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the normalization, such as ui(0)= 0 or ui[min{∪aMi(a)}] = 0, the value of c is identified.

It further identifies the utility function ui(m) ∀m ∈ ∪aMi(a).

As described above, Assumption 3’(a) implies that the mapping Fi(·) is bijective

(Norets and Takahashi, 2013; Sørensen and Fosgerau, 2022). Therefore, we could invert

Fi(·) and the QRE restriction by Equation (49) becomes:

F−1
i [pi(m)] = ẼUi[mi,p−i(m)] = Π̃i(mi) ·p−i(m). (55)

This equation implies the non-parametric identification of the error distribution, as es-

tablished by Proposition 1’.

Proposition 1’. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold; therefore,

the marginal utility u′i(m) is point identified for each player i by Proposition 7. In the

next step, suppose that the analyst fixes mi at an arbitrary value m1
i and only considers

the variation of m−i, then F−1
i (p) is point identified ∀p ∈ Pi(m1

i ).

Proof. As described above, the identification of u′i(m) implies that the utility function is

identified in the class of ui(m)+c. Consequently, the difference of utilities π̃i(mi,ai,a−i)=

ui[mi(ai,a−i)]− ui[mi(ai = 0,a−i)] is uniquely determined as the constant c is canceled

out. It further implies that the matrix Π̃i(mi) is known to the analyst for each mi ∈Mi.

For an arbitrary value m1
i , Equation (55) turns to:

F−1
i [pi(m1

i ,m−i)] = Π̃i(m1
i ) ·p−i(m1

i ,m−i). (56)

The terms on the right-hand side are known to the analyst. Consequently, the exogenous

variation of m−i then identifies F−1
i (p) for all values of p in the support of Pi(m1

i ). This

completes the proof.

Due to the inverse relationship between F−1
i (·) and Fi(·), Proposition 1’ implies the

non-parametric identification of the mapping Fi(·). It further implies that the distribution
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of the difference of errors ϵ̃i =
(
εi(1)−εi(0),εi(2)−εi(0), · · · ,εi(Ki)−εi(0)

)′ is uniquely

determined (Train, 2009).

Recall that F̂−1
i (p|m1

i ) represents the inverted choice probability function that satis-

fies the QRE restrictions when the analyst fixes mi at m1
i . Proposition 1’ directly implies

a testable restriction of QRE, as established below.

Proposition 2’. Suppose that Assumptions 1’ to 5’ and QRE restrictions hold. Consider

any two realizations of mi, denoted as m1
i and m2

i . Suppose that Pi(m1
i )∩Pi(m2

i ) ̸=∅,

then the null hypothesis of QRE implies the following testable restriction:

F̂−1
i (p|m1

i ) = F̂−1
i (p|m2

i ), ∀p ∈ Pi(m1
i )∩Pi(m2

i ). (57)

Proof. A direct implication of Proposition 1’.

Comparison to Xie (2022) In multinomial choice games with field data, Xie (2022) es-

tablishes the non-parametric identification of the utility and the error distribution. How-

ever, to prove these results, he imposes two strong restrictions: one on the model primi-

tive and the other on the data. In contrast, this paper shows that in experimental datasets

where the outcome variable is observed, the non-parametric identification results can be

achieved without imposing these two strong restrictions. We elaborate these two restric-

tions below.

The first restriction in Xie (2022) is that the error distribution must satisfy a rank

ordering property. Under this property, one action is chosen more frequently than an-

other if and only if it yields a strictly higher expected utility. While this assumption

is often made in empirical applications of QRE, it imposes strong restrictions on the

error distribution. In particular, this property rules out error structures with flexible cor-

relations and features of heteroskedasticity. To illustrate this point, consider an agent

facing three actions labeled as 1, 2, and 3, with associated expected utilities denoted as
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EU(1), EU(2), and EU(3). Without loss of generality, suppose that EU(1)> EU(2)>

EU(3). Consider one structure where the errors ε(k) follow the same marginal distri-

bution but can be correlated across actions. In particular, ε(1) and ε(2) exhibit strong

positive correlation, and they are independent of ε(3). This error structure implies that

EU(1)+ε(1)> EU(2)+ε(2) would hold with high probability, leading to a low choice

probability of action 2. However, action 3 might be chosen more frequently than action

2 due to its independent error ε(3). Next, consider another structure where ε(k) are in-

dependent across actions but are heterogeneous in their scales. In particular, the agent

only makes minor mistakes for the first two actions, resulting in small Var(ε(1)) and

Var(ε(2)). Consequently, action 2 is still chosen with a small probability since its per-

turbed expected utility is likely to be smaller than that of action 1. In contrast, suppose

ε(3) has a large variance; then the third action could be chosen more frequently than

action 2, since this agent may frequently and mistakenly evaluate action 3 as highly at-

tractive. In summary, under these two reasonable error structures, the agent will choose

action 3 more frequently than action 2 even though action 3 has a lower expected utility.

Clearly, the rank ordering property is violated.

Xie (2022) also considers another strong restriction on the data. In particular, he

defines two actions to be connected if these two actions can be chosen with equal prob-

ability. His identification results require each pair of two actions to be either connected

or linked through a sequence of connected actions. This particular data structure is chal-

lenging to construct in an experiment.

Implications of Assumption 2’

This section focuses on 2× 2 games and discusses the implications of Assumption 2’

on the results presented in the main text. First, under this assumption, the previous

section establishes the identification results without assuming prior knowledge of the

values of F−1
i (p1) and F−1

i (p2). Consequently, when player i’s monetary payoffs exhibit
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exogenous variations for at least two action profiles, the analyst does not need to impose

the payoff structures as required by Assumption 6 to identify the median and the mean

of the errors.

Assumption 2’ itself also implies that our over-identification test incorporates more

restrictions than the test by Xie (2022). Specifically, let a′ ̸= a′′ be the two action profiles

in Â(i) as required by Assumption 2’. When Mi(a′)∩Mi(a′′) is an interval, there exist

infinite pairs where each pair contains two values m1
i and m2

i such that m1
i (a′) = m2

i (a′′)

and m2
i (a′) = m1

i (a′′). Moreover, between m1
i and m2

i , let player i’s monetary rewards

hold constant for all action profiles other than a′ and a′′. We claim that these pairs imply

testable restrictions of QRE in addition to Xie (2022).

Consider the first scenario that a′−i ̸= a′′−i. The pair m1
i and m2

i implies that π̃i(m1
i ,a

′
−i)−

π̃i(m2
i ,a

′
−i)= π̃i(m1

i ,a
′′
−i)− π̃i(m2

i ,a
′′
−i) if a′i ̸= a′′i and π̃i(m1

i ,a
′
−i)− π̃i(m2

i ,a
′
−i)= π̃i(m2

i ,a
′′
−i)−

π̃i(m1
i ,a

′′
−i) if a′i = a′′i . Consider the other scenario that a′−i = a′′−i. The pair m1

i and m2
i

then implies that π̃i(m1
i ,a

′
−i) = −π̃i(m2

i ,a
′
−i). These linear restrictions on utility dif-

ferences π̃i(·) lead to additional linear restrictions on F̂−1
i (p|mi) through the definition

of F̂−1
i (p|m) by Equation (6). These restrictions are therefore included in our over-

identification test that is based on F̂−1
i (p|mi). However, they are excluded from the test

by Xie (2022).

Relaxing the Invariance Assumption When there are at least two action profiles with

varying monetary payoffs as per Assumption 2’, the analyst is able to relax the invariance

condition as in Assumption 3(b) and still tests the null hypothesis of QRE. In particular,

we allow player i’s distribution function Fi(ε̃i) to depend on their own rewards mi and

restrict it to be independent of other players’ payoffs m−i. To capture this dependence,

we adapt the notation Fi(ε̃i|mi).

Let a′ and a′′ be the two distinct profiles in Â(−i). Suppose that the analyst fixes

m−i(a′) = m1
−i and varies player −i’s payoffs for the other profile a′′. In alignment with

the main text, we denote F̂−1
i (p|mi,m−i(a′) = m1

−i) as the quantile function that satisfies
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QRE restrictions when m−i(a′) is fixed at m1
−i. The proof of Proposition 1 indicates

that this quantile function is identified for any value of m−i(a′) based on the variation

provided by m−i(a′′). Consequently, the null hypothesis of QRE implies the following

testable implication:

F̂−1
i (p|mi,m−i(a′) = m1

−i) = F̂−1
i (p|mi,m−i(a′) = m2

−i), ∀mi,m1
−i,m

2
−i.
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