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Abstract 
We provide a theory of fire sales in which potential buyers are subject to liquidity shocks and 

frictions that limit their ability to resell assets. The model predictions align with some stylized 

facts about the large sales of corporate bonds and Treasury securities during the COVID-19 

economic crisis. The equilibrium is constrained efficient under weak conditions that apply if one 

interprets the key agents in the model as money market funds or mutual funds. Thus, as viewed 

through the lens of the model, the liquidity requirements proposed by the U. S. Securities and 

Exchange Commission for these intermediaries could hurt the economy. 

Topics:  Asset pricing; Financial markets; Financial system regulation and policies  

JEL codes: G12, G23, G28 

Résumé 
Nous présentons une théorie des liquidations d’actifs dans laquelle les acheteurs potentiels 

sont assujettis à des chocs de liquidité et à des frictions qui limitent leur capacité à revendre 

les actifs. Les prévisions du modèle cadrent avec certains faits stylisés liés aux ventes massives 

d’obligations de sociétés et de titres du Trésor américain pendant la pandémie de COVID-19. 

L’équilibre est efficace en présence de conditions fragiles qui s’appliquent si l’on considère 

comme les agents les plus importants du modèle les fonds du marché monétaire ou les fonds 

communs de placement. Par conséquent, d’après le modèle, les exigences en matière de 

liquidité que propose la Securities and Exchange Commission des États-Unis (SEC) pour ces 

intermédiaires pourraient nuire à l’économie. 

Sujets : Évaluation des actifs; Marchés financiers; Réglementation et politiques relatives au 

système financier 

Codes JEL : G12, G23, G28 

 



1 Introduction

Fire sales are common phenomena in periods of financial distress. These episodes are characterized

by large sales of financial assets together with a reduction in their prices, despite little to no change

in the fundamentals. These events arise when investors are forced to sell their assets for a variety

of reasons. Examples of assets undergoing fire sales are abundant across markets and asset classes,

ranging from assets held by banks in distress (Granja, Matvos, and Seru, 2017), asset-backed se-

curities held by insurance companies (Merrill et al., 2021) and, more recently, safe assets such as

highly rated corporate bonds and long-term Treasury securities (Falato, Goldstein, and Hortaçsu,

2021; Vissing-Jorgensen, 2021; Ma, Xiao, and Zeng, 2022), which were subject to fire sales at the

peak of the COVID-19 crisis. Regulators have introduced various tools to limit fire sales, such as

liquidity requirements on banks and money market mutual funds (MMMFs). Recent proposals by

the U.S. Securities and Exchange Commission (SEC) call for tightening the liquidity requirements

on MMMFs and also imposing such requirements on mutual funds.1

The literature provides several theories to explain fire sales. The main theories postulate that

experts that are willing to pay a high price have limited wealth with which to purchase financial as-

sets (Allen and Gale, 1998) and non-expert investors have a lower willingness to pay (Acharya and

Yorulmazer, 2008; Dow and Han, 2018). The latter might be less willing to pay because they are

only able to extract a lower cash flow relative to sellers and experts (Shleifer and Vishny, 1992; Kiy-

otaki and Moore, 1997; Lorenzoni, 2008; Dávila and Korinek, 2018) or because they have limited

information about asset quality and are concerned about the adverse-selection problems (Chang,

2018; Dow and Han, 2018; Kurlat, 2016). If the selling pressure is limited, experts purchase all

of the assets at high prices. But if the selling pressure is high, prices drop to fire-sale levels to

encourage non-experts to step in.

The main fire-sale theories, however, might not fit some key stylized facts of the forced sales

of high-quality corporate bonds and long-term Treasury securities that occurred at the peak of the

COVID-19 crisis—and the associated drop in prices. These assets only require investors to collect

cash flows; thus, theories based on investors’ limited ability to manage these assets do not apply. In

1The proposal for MMMFs is available at the U.S. Securities and Exchange Commission, 17 CFR Parts
270 and 274 [Release No. IC-34441; File No. S7-22-21], RIN 3235-AM80, “Money Market Fund Reforms,”
https://www.sec.gov/rules/proposed/2021/ic-34441.pdf. For mutual funds, the proposal is available at the U.S. Se-
curities and Exchange Commission, 17 CFR Parts 270 and 274 [Release Nos. 33-11130; IC-34746; File No. S7-26-
22], RIN 3235-AM98, “Open-End Fund Liquidity Risk Management Programs and Swing Pricing; Form N-PORT
Reporting,” https://www.sec.gov/rules/proposed/2022/33-11130.pdf.
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addition, these assets are typically not associated with asymmetric information; therefore, fire-sale

theories based on adverse selection are unlikely to be relevant.

Our main contribution is to provide a novel theory of fire sales that applies to a large set of

assets—including, but not limited to, those that require no particular skills for collecting cash flows

and that are not subject to adverse-selection problems. Our theory combines resale frictions with

endogenous variations in buyers’ exposure to liquidity risk, which generate lower prices for long-

term illiquid assets in response to increases in market-wide selling pressure.

In our framework, potential buyers are subject to future liquidity shocks and frictions that limit

their ability to resell assets in the future. These frictions affect the price that potential buyers

are willing to pay today to purchase a long-term asset. While it is well understood that frictions

affecting the ability to resell an asset in the future can affect its price today (Amihud and Mendelson,

1986), our model has an important novelty. That is, the degree to which future reselling frictions

can affect current asset prices is endogenous and varies with the amount of long-term assets that

are sold. In normal times, when there are limited sales of long-term assets, buyers have little or no

concern about future resale frictions and, thus, are willing to pay a high price. However, in crisis

times—when selling pressure is higher—buyers are very concerned about future resale frictions,

so they are only willing to pay a lower fire-sale price to purchase long-term securities. But why do

resale frictions become (more) relevant in crisis times? In our model, investors have access to two

assets—a short-term liquid asset and a long-term illiquid one—which are both in limited supply.

During crises, sellers dump the long-term illiquid asset on the market and purchase the short-term

liquid one, thereby draining liquidity from the market. Buyers are thus left with lower liquidity and

when they are hit by a liquidity shock, they prefer to sell some of their holdings of the long-term

security. But they might not be able to do so because of the reselling frictions. Anticipating this

possibility, they are willing to pay a low fire-sale price when purchasing the long-term asset in

the first place. Importantly, the fire-sale price is lower for the asset that is plagued by more resale

frictions—a cross-sectional prediction that we use to validate our model. We label the channel that

gives rise to a fire-sale price liquidity risk pricing to highlight the role played by the combination

of two elements, namely, the concern about the future liquidity of the long-term asset and the risk

that affects the buyers and subjects them to liquidity shocks and resale frictions.

A key element of our paper is our analysis of the efficiency properties of the equilibrium and the

role of policy. We build on the approach used in the fire-sale literature (Dávila and Korinek, 2018;

Kurlat, 2021) and we find that the equilibrium is generically inefficient because of the externalities
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that arise from market incompleteness. However, different from most of the fire-sale literature,

we identify weak conditions under which the equilibrium is constrained efficient and, thus, under

which policy interventions do not produce Pareto improvements. We argue that these conditions

apply if the key agents in the model are interpreted as MMMFs or mutual funds—which were

involved in fire sales at the peak of the COVID-19 crisis, as noted before. Hence, when viewed

through the lens of our model, the SEC’s proposed liquidity requirements for MMMFs and mutual

funds would not produce welfare improvements and, if implemented, could harm the economy.

Our policy implications complement those derived by other papers that highlight the unintended

consequences of liquidity requirements, such as Malherbe (2014) .

The main logic behind the welfare results is that the typical elements that give rise to external-

ities in other fire-sale models are absent here. Specifically, our model does not include collateral

constraints or sources of asymmetric information and all investors have the same ability to collect

cash flows. In this sense, the model applies naturally to the analysis of MMMFs and mutual funds

focused on high-quality assets such as highly rated corporate bonds or Treasury securities.

Our model is consistent with some stylized facts of fire sales observed in practice and we pro-

vide a brief comparison with the events that took place during the peak of the COVID-19 crisis.

In March 2020, mutual funds and other investors sold a large amount of high-quality corporate

bonds and long-term Treasury securities, resulting in large increases in yields unrelated to changes

in the fundamentals (Falato, Goldstein, and Hortaçsu, 2021; Vissing-Jorgensen, 2021). For corpo-

rate bonds, most of the sales were absorbed by final customers—as dealers did not increase their

balance sheet holdings—and the evidence in O’Hara and Zhou (2021) points to a strong reduction

in buyers’ willingness to pay, which is consistent with our model. For Treasury securities, dealers

absorbed a large part of the sales and played a more important role (He, Nagel, and Song, 2022),

but some stylized facts such as the increase in the on-the-run premium are consistent with the cross-

sectional predictions of our model and hard to reconcile with explanations based solely on the role

played by dealers.2

The baseline analysis uses a simple framework to convey the main elements and results of our

fire-sale theory. The resell friction is extreme—no reselling is possible—and sellers can be in-

terpreted as banks or MMMFs or mutual funds that are subject to withdrawal shocks that might

force them to sell long-term assets to pay for such withdrawals. We then present alternative ap-

2The on-the-run premium is the spread between the yields on off-the-run and on-the-run Treasury securities. On-
the-run securities are the most recently auctioned ones of any given tenor and off-the-run ones are all the other types
of securities.
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plications in which we combine the liquidity risk pricing with other channels that generate selling

pressure. In particular, we show that selling pressure can arise from a tightening of the collateral

constraint—such as in the case of insurance companies’ fire sales of mortgage-backed securities in

2008 (Merrill et al., 2021)—or from bank runs in which depositors’ withdrawals force banks to sell

their long-term investments—such as the runs on the MMMFs that took place in 2008 and during

the COVID-19 crisis (Schmidt, Timmermann, and Wermers, 2016; Li et al., 2021).

At a more general level, our theory of fire sales uses a pricing mechanism that is in line with

recent advances in the asset pricing literature. While asset prices are in general equal to expected

discounted cash flows, fire-sale prices in existing fire-sale theories are often the result of only the

expectation part of the sale, with little or no role played by fluctuations in discount rates (i.e., in-

vestors’ marginal utilities). Indeed, many of these theories can be derived in frameworks in which

marginal investors have linear utility (Allen and Gale, 1998; Kurlat, 2021). Yet, this approach is

in stark contrast with modern asset pricing, which emphasizes the importance of fluctuations in

discount rates to explain movements in asset prices (Cochrane, 2011). In our model, combinations

of liquidity shocks, resale frictions, and increased selling pressure in crisis times give rise to fluc-

tuations in discount rates resulting in lower asset prices during fire sales despite there being no

changes in the fundamentals.

1.1 Additional comparison with the literature

Classic theories of fire sales rely on second-best use (Shleifer and Vishny, 1992), limited cash in

the market (Allen and Gale, 1998), and collateral constraints (Kiyotaki and Moore, 1997). More-

recent approaches build on these insights, for instance, by providing a deeper understanding of

why cash in the market might be limited (Acharya and Yorulmazer, 2008; Kurlat, 2016; Dow and

Han, 2018). In a sense, our contribution is similar as buyers’ exposure to liquidity and resale risk

reduces their demand. Besides important economic insights about fire sales, our microfoundation

implies different efficiency properties of the equilibrium (in comparison to, say, Allen and Gale,

2004; Dávila and Korinek, 2018; and Kurlat, 2021), leading to different policy prescriptions.3

There is a large empirical literature that tries to identify fire sales in various financial markets—

in addition to the papers that study the fire sales of Treasury securities, discussed in the intro-

3There is also a literature that studies the efficiency of equilibria when firms are subject to frictions that give rise
to externalities similar to those that arise in fire-sale models; see, for instance, He and Kondor (2016) and Lanteri and
Rampini (2023).
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duction. Coval and Stafford (2007) and Jotikasthira, Lundblad, and Ramadorai (2012) document

equity securities fire sales that are driven by mutual funds outflows. Merrill et al. (2021) analyze

forced sales of mortgage-backed securities by insurance companies. Other papers such as Ellul,

Jotikasthira, and Lundblad (2011), Falato et al. (2021), Falato, Goldstein, and Hortaçsu (2021),

and Manconi, Massa, and Yasuda (2012) provide evidence of fire sales in corporate bond markets

both in normal times as well as during the 2007-08 financial crisis and the COVID-19 crisis, and

Li and Schürhoff (2019) provide evidence of fire sales in municipal bond markets. Ambrose, Cai,

and Helwege (2012) and Choi et al. (2020) challenge the evidence about corporate bond fire sales,

but their analysis does not include the COVID-19 period.4 The corporate bond fire sales that took

place during the COVID-19 pandemic were unprecendented in size and, to our knowledge, there is

no disagreement about the events of this period.

Finally, our work is also related to a large banking literature in which fire sales are combined

with or produce financial fragility. This literature typically uses models in which fire sales are

exogenous or arise from cash-in-the-market or second-best-use considerations (Caballero and Sim-

sek, 2013; Diamond and Dybvig, 1983; Gertler and Kiyotaki, 2015; Goldstein et al., 2022). In this

literature, Gale and Yorulmazer (2013) and Robatto (2019) consider agents’ exposure to liquidity

risk that generates a precautionary demand for liquid assets, similar to our framework. Both papers

use fairly rich banking settings that give rise to inefficiencies and focus on central bank interven-

tions. We instead show that the essential elements that give rise to fire sales under liquidity risk

pricing do not necessarily generate inefficiencies, leading to very different welfare implications and

policy prescriptions.

2 Baseline model

Consider an economy populated by two sets of investors, which we refer to as the buyers (b) and the

sellers (s). The economy lasts three periods, t = 0, 1, 2. Time t = 0 denotes when a fire sale can

happen—taking as given investors’ initial time-0 portfolios. Time t = 1 is when resale frictions

and liquidity shocks might affect the buyers. And time t = 2 is when any remaining payoff is

realized. In Section 3, when conducting policy analysis, we will add a period t = −1 to study

4Choi et al. (2020) also challenge the SEC proposal to impose regulation on bond mutual funds, based on their result
that fire sales are limited or absent. We also challenge the same policy proposals but based on a different logic—even
if outflows from mutual funds generate fire sales, our theory suggests that policy interventions in the form of liquidity
regulation do not produce Pareto improvements.
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ex ante investment decisions, the efficiency properties of the equilibrium, and possible regulatory

interventions.

2.1 Preferences, technology, and endowments

The sellers have linear utility from consumption at t = 2, cs2. The buyers consume at t = 2, but they

might also derive utility from consumption at t = 1, depending on the realization of a preference

shock:

U b
(
cb1, c

b
2

)
=

u
(
cb1
)
+ cb2 w/prob θ

cb2 w/prob 1− θ

with u (c) = log c. The preference shocks are in the spirit of Diamond and Dybvig (1983) and give

rise to the need to finance some consumption expenditures at t = 1.

There are two assets: a short-term (liquid) asset, which can be interpreted as a storage technol-

ogy, and a long-term asset. The liquid asset is standard—for each unit invested at time t, there is

one unit available at t + 1. The long-term asset has a payoff R at t = 2. We assume R > 1. This

assumption is important for the policy analysis of Section 3 but it does not affect the results of this

section.

In terms of endowments, sellers’ begin t = 0 with an amount ks
−1 of the long-term asset and

we normalize their initial holdings of the liquid assets to zero. Sellers also have liabilities ds−1,

which we assume are toward external agents, with ds−1 representing the face value. As the notation

suggests, one can think of these endowments as being determined in a period, t = −1, which is

unmodeled at this point but which will be analyzed later in Section 3. The buyers’ endowments are

given by the amounts lb−1 and kb
−1 of the liquid and long-term assets, respectively.

We note that at t = 0, the buyers and sellers are able to adjust their portfolio holdings of

the liquid and long-term assets (see the next section, which describes markets). However, at the

economy-wide level, it is not possible to change the overall supply of the two assets at t = 0—these

are given by lb−1 and ks
−1 + kb

−1, respectively. The choices that lead to the economy-wide supply of

these two assets will be analyzed in Section 3, when studying the ex ante investment decisions of

investors.
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2.2 Markets

At t = 0, there is a centralized market in which investors can trade the liquid and long-term assets.

We denote q0 as the price of the long-term asset and normalize the price of the liquid asset to one.

We assume that short selling is not allowed, although the analysis can be extended without altering

the logic of the results. For instance, we can allow for short selling subject to some costs or limits,

or some primitives of the model such as preferences can be generalized in a way that agents choose

endogenously to take only long positions.

At t = 1, there are frictions that limit investors’ ability to trade. In particular, we consider

the extreme scenario in which no trade is possible at t = 1 (as in, for instance, Caballero and

Simsek, 2013). The result can be extended to allow for trading in markets with frictions, such as

over-the-counter (OTC) markets or limited market participation.

2.3 Aggregate shock at t = 0

At t = 0, sellers must repay a fraction, γ, of their debt, ds−1, while the remaining fraction, 1− γ, is

due at t = 1. We assume γ is an aggregate shock that can take the value γ ∈ {0, γ} and is realized

at the beginning of t = 0, that is, before the time-0 market opens. The realization of γ is common

knowledge. In the state in which γ = γ, the equilibrium will display sales of the long-term assets

by sellers at a fire-sale price.

We interpret sellers as banks or MMMFs or mutual funds that experience withdrawals or out-

flows, with γ = 0 representing a low-withdrawal state and γ = γ a high-withdrawal state. Two

remarks are in order. First, in Appendix A, we reformulate the model so that the withdrawals are

paid at their net asset values (NAV), in line with the possibility of interpreting the sellers as mutual

funds or certain MMMFs. Second, one possible interpretation of a high realization of γ is that of

a run on the sellers’ liabilities, ds−1, when such liabilities are held by external agents. Section 4.2

also studies runs on the sellers but under the assumption that their liabilities are held by buyers.
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2.4 Buyers’ choices

We now analyze the buyers’ problem. They choose their holdings of liquid and long-term assets at

t = 0 as well as their consumption at t = 1 if they are hit by the following preference shock:

max
lb0≥0, kb0≥0,cb1≥0

(1− θ)

lb0 +Rkb
0︸ ︷︷ ︸

=cb2

+ θ

u (cb1)+ lb0 − cb1 +Rkb
0︸ ︷︷ ︸

=cb2

 (1)

subject to the time-0 budget constraint (2) and the time-1 liquidity constraint (3),

lb0 + q0k
b
0 ≤ lb−1 + q0k

b
−1, (2)

cb1 ≤ lb0. (3)

The liquidity constraint (3) implies that investors’ consumption can only be financed using the

liquid asset.

The first-order condition with respect to the time-1 consumption choice, c1, implies

u′ (cb1) ≥ 1. (4)

That is, absent the liquidity constraint (3), the agent would like to consume up to the point at which

the time-1 marginal utility is equal to the time-2 marginal utility—given that these resources can

be stored with a gross return of one. However, if the liquidity constraint is binding, the time-1

consumption will be lower, resulting in a time-1 marginal utility greater than one.

The time-0 decisions imply the standard asset pricing condition

q0 =
1

(1− θ)× 1 + θ u′
(
cb1
) ×R, (5)

where the term 1

(1−θ)×1+θ u′(cb1)
is the ratio of the marginal utility at t = 2 and the (average) marginal

utility at t = 1. That is, the marginal utility at t = 2 is equal to one and the marginal utility at t = 1

is (1− θ)× 1 + θ u′ (cb1).

The first-order conditions (4) and (5) imply

q0 ≤ R. (6)
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To preview some of the results, we note that if the buyers enter t = 1 with sufficiently large hold-

ings of liquidity, their liquidity constraint (3) will not be binding, even if they are hit by a preference

shock. In other words, their liquidity holdings will provide full insurance against preference shocks

and the preference shocks will be irrelevant—on the margin—to determine the buyers’ asset de-

mand at t = 0. As a result, at t = 0, the buyers are willing to pay a price q0 = R to purchase

long-term assets, that is, a price that depends solely on the cash flow such assets produce at t = 2.

If instead the buyers enter t = 1 with small holdings of liquidity, their liquidity constraint (3)

will be binding if they are hit by a preference shock. This will make their time-1 marginal utility

greater than one, that is, u′ (cb1) > 1. As a result, when the buyers make their portfolio decisions at

t = 0, they will value their liquid assets disproportionately more, as such assets relax the liquidity

constraint (3). This will increase the buyers’ demand for liquid assets and reduce their demand

for long-term assets, resulting in a price q0 < R for long-term assets. That is, with only partial

insurance against preference shocks, the buyers are willing to pay a lower price for the long-term

asset because such an asset is illiquid at t = 1.

2.5 Sellers’ choices

The sellers’ problem is rather mechanical. They face exogenous withdrawals γds−1, with γ ∈
{0, γ}, and because they consume only at t = 2, they invest all of their resources in the long-term

asset.

Formally, the sellers choose their non-negative holdings of liquid and long-term assets at t = 0,

ls0 ≥ 0 and ks
0 ≥ 0, to maximize consumption, cs2, subject to the time-0 budget constraint

ls0 + q0k
s
0 ≤ q0k

s
−1 − γds−1,

and where consumption, cs2, is given by the payoff of the time-0 investments net of the repayments,

(1− γ) ds−1, that are due to debt holders:

cs2 = Rks
0 + ls0 − (1− γ) ds−1.

We restrict our attention to the relevant equilibrium cases in which q0 ≤ R. When q0 < R, the long-

term asset has a higher return than the liquid asset and, thus, the sellers invest all of their wealth in
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the long-term asset. That is, ls0 = 0, and ks
0 is residually determined by the budget constraint:

ks
0 =

q0k
s
−1 − γds−1

q0
.

If q0 = R, the liquid and long-term assets have the same returns, so the sellers are indifferent

between the two. We show in the next section that the equilibrium is characterized by the sellers

investing all of their wealth in the long-term asset, similar to the case in which q0 < R.

2.6 Parameter restrictions

There is only one key parameter restriction that is necessary to derive the results, that is, that the

buyers are endowed with enough liquidity lb−1 at the beginning of t = 0 to pay for the withdrawals,

γds−1, in a high-withdrawal state. Formally, lb−1 > γ̄ds−1. To simplify the exposition, however, we

include two additional normalizations. First, we assume that liquidity is at an intermediate level,

that is,

1 ≤ lb−1 ≤ 1 + γ̄ds−1. (7)

This implies that the fire-sale price, q0 < R, arises only in the state with large withdrawals, γ = γ̄.

Relaxing this assumption would generate a price, q0 < R, in both states, even though the price

would be lower in the high-withdrawal state—in line with the results we derive. Second, we assume

that the high-withdrawal shock is not too large:

γ̄ <
Rks

−1l
b
−1 + ds−1l

b
−1 (1− θ) + ds−1θ − ls−1

[
lb−1 (1− θ) + θ

]
ds−1

[
ds−1 (1− θ)− lb−1 −Rks

−1

] . (8)

This assumption guarantees that the sellers are always solvent in equilibrium. The model can

be extended to allow for the sellers to default, but this would complicate the exposition without

changing the nature of the results.

2.7 Equilibrium

The equilibrium definition is standard. Given a realization of the shock γ ∈ {0, γ}, an equilibrium

is a collection of the buyers’ and sellers’ portfolio choices at t = 0, the buyers’ consumption

choices at t = 1, buyers’ and the sellers’ consumption choices at t = 2, and a time-0 price q0 for

the long-term asset, such that the buyers and sellers maximize their utility and the time-0 market
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clears. Specifically, the market-clearing condition for liquidity at t = 0 is

lb0 + γds−1 = lb−1. (9)

That is, the liquid asset available in the economy, lb−1, is allocated between the buyers’ holdings lb0
and the resources γds−1 that are used to repay the sellers’ debt holders. (Recall from Section 2.1 that

the sellers’ initial endowment of liquidity is normalized to zero, so that all of the liquidity available

at t = 0 is supplied by the buyers through their endowment, lb−1.) The other market-clearing

condition—for the long-term asset—holds by Walras’s law, but we also state it for completeness:

kb
0 + ks

0 = kb
−1 + ks

−1. (10)

We first solve for equilibrium, given the realization of the low-withdrawal state γ = 0. In

this case, the sellers do not need to sell any debt and market clearing implies that the buyers hold

all of the liquidity at the end of t = 0. Given the normalization imposed in Equation (7), the

liquidity is high enough so that the buyers can fully self-insure against time-1 preference shocks.

In a sense, time-1 trading frictions—even if very extreme—are not relevant because of the full

insurance against the liquidity shock. As a result, no fire sales arise in this case, as summarized by

the next proposition. All of the proofs are provided in Appendix B.

Proposition 2.1. (Equilibrium with low selling pressure: no fire sales.) Given γ = 0, there exists

an equilibrium in which the time-0 price of the long-term asset is q0 = R, the buyers and sellers

engage in no trades at t = 0 (i.e., lb0 = lb−1 and kb
0 = kb

−1 for the buyers, and ls0 = 0, ks
0 = ks

−1 for

the sellers), and the time-1 consumption of the buyers that are hit by a preference shock is cb1 = 1.

Next, we solve for the equilibrium given the realization of the high-withdrawal shock, γ = γ̄.

To pay for the withdrawals, γds−1, sellers sell some of their holdings of the long-term asset and

drain some liquidity from the market. As a result, the buyers’ holdings of the liquid asset are lower

than in the scenario with γ = 0 and they are not able to fully self-insure against the preference

shocks. This lack of liquidity introduces a wedge between the marginal utilities that affect the asset

prices and, in particular, the time-0 price of the long-term asset. In other words, the time-1 trading

frictions are now relevant for the time-0 decisions. At t = 0, the buyers fear that they might be

hit by a time-1 preference shock and face a trading friction that would limit their ability to sell the

long-term asset at t = 1. As a result, a fire sale arises; that is, the assets sold by the sellers to pay
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for their withdrawals are traded at a price that is lower than the expected payoff, R, as formalized

by the next proposition.

Proposition 2.2. (Equilibrium with high selling pressure: fire sales.) Given γ = γ, there exists

an equilibrium with fire sales; that is, the time-0 price of the long-term asset is

q0 = R

(
lb−1 − γ̄ds−1

)(
lb−1 − γ̄ds−1

)
(1− θ) + θ

< R,

the sellers sell part of their initial holdings of the long-term asset and hold no liquidity at t = 0

(i.e., ks
0 < ks

−1 and ls0 = 0), the buyers reduce their liquidity holdings and increase their long-term

asset holdings at t = 0 (i.e, lb0 < 1 and kb
0 > kb

−1), and the time-1 consumption of the buyers that

are hit by a liquidity shock is cb1 < 1.

Before turning to the analysis of the ex ante investments at t = −1 and of possible policy

interventions in Section 3, the next section derives additional predictions of the model and compares

them with the fire sales observed during the COVID-19 crisis.

2.8 (Il)liquid long-term assets: cross-sectional model predictions and com-

parison with COVID-19 fire sales

We now provide some cross-sectional predictions that can be used to validate our model and we

compare them with some empirical evidence. Specifically, we characterize the spread between two

otherwise equivalent long-term assets that differ in their time-1 resale frictions. We show that this

spread increases in times of fire sales and that this prediction is consistent with the fire sales of

Treasury securities that took place during the COVID-19 crisis.

We keep working in the context of our simple model in which the long-term asset k is subject

to an extreme reselling friction and, thus, cannot be traded at t = 1. We consider another long-term

asset, which we denote by h, that has the same payoff R as the long-term asset k but can be traded

at t = 1. The new long-term asset h is thus subject to fewer resale frictions at t = 1 and, in keeping

with our approach of using stark assumptions to easily convey the results, we assume that time-1

trades of asset h are not subject to any frictions at all. We price asset h assuming that it is in zero

net supply and, similar to the liquid asset, that short selling is not possible. We then obtain the

spread between the yields of assets k and h and we analyze how such a spread can vary between

normal times and times when there are fire sales.
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Let hb
0 be the buyer’s holdings of the liquid long-term asset and p0 be the price at t = 0. The

buyer’s budget constraint, Equation (2), becomes

lb0 + q0k
b
0 + p0h

b
0 ≤ lb−1 + q0k

b
−1. (11)

Because the asset can be traded at t = 1, the buyer’s time-1 constraint, Equation (3), becomes

cb1 + lb1 + p1h
b
1 ≤ lb0 + p1h

b
0, (12)

where lb1 and hb
1 are the agent’s holdings of the short- and long-term liquid assets after trading at

t = 1 and p1 is the time-1 price of the long-term liquid asset. Note that asset k is still assumed to

be illiquid at t = 1 (i.e., it cannot be traded) and thus does not enter in Equation (12). The sellers’

budget constraints can be amended similarly.

To price h, we note that such an asset is essentially a perfect substitute of the (short-term) liquid

asset l. Hence, a no-arbitrage argument implies that its price depends only on the payoff R and is

not affected by illiquidity considerations in fire-sale states. That is, p0 = p1 = R both in the state

with no fire sales (i.e., when γ = 0) and in the state with fire sales (i.e., when γ = γ̄). The result is

formalized by the next proposition.

Proposition 2.3. Introducing the long-term liquid asset h in zero net supply does not change the

equilibrium prices nor the allocations derived in Propositions 2.1 and 2.2. The price of this asset

is p0 = R for both realizations of γ ∈ {0, γ̄} and all agents have zero holdings of such assets at all

times.

Next, we analyze the spread between the yields of the two long-term assets, given by 1/q0− 1/p0.

This spread is zero when there are no fire sales and increases to strictly positive values in fire-sale

times. The “zero” result follows from the stark assumptions we used to simplify the exposition.

The analysis can be easily extended to produce a small positive spread, even in cases with no fire

sales, by adding some small time-1 trading friction for the long-term liquid asset, and the result that

the spread increases in fire-sales times would be unchanged.

The model predictions are consistent with some key empirical evidence about fire sales. First,

Falato et al. (2021) show stronger fire-sale effects in less-liquid times. Second, the predictions

align with some key stylized facts about the fire sales of corporate bonds and Treasury securities

that took place at the peak of the COVID-19 crisis, which we discuss in detail below. Because the
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long-term assets in our model are not subject to adverse selection and do not require special skills

to extract their cash flows, it seems natural to compare them with (high-quality) corporate bonds

and Treasury securities.

We focus on the events of the first part of March 2020, that is, until the announcement of

the main Federal Reserve interventions on March 23, 2020. Large sales of corporate bonds were

associated with unprecedented outflows from corporate bond funds, exceeding $200 billion (Falato,

Goldstein, and Hortaçsu, 2021; O’Hara and Zhou, 2021). Sales of Treasury securities by mutual

funds and several other financial players were also unprecedented, exceeding $800 billion (Vissing-

Jorgensen, 2021).

In the case of corporate bonds, O’Hara and Zhou (2021) and Kargar et al. (2021) document

an increase in customer-to-customer trades, that is, those not involving dealers. Indeed, dealers

played no major role in absorbing these sales, as their inventories remained essentially unchanged

or even decreased a little.5 Falato, Goldstein, and Hortaçsu (2021) provide evidence of fire sales

in the corporate bond market. O’Hara and Zhou (2021) document that customer-to-customer sales

(i.e., those not intermediated by dealers) took place at a substantial premium relative to intra-dealer

trades, and this premium was much higher in comparison to the pre-COVID events. These facts are

consistent with buyers stepping in and absorbing the increase in sales but with a lower willingness

to pay than in normal times. As viewed through the lens of our model, this lower willingness to pay

is justified by the buyers’ exposure to the resell risk that is driven by the reduction in the liquidity

available in the market.

In the case of Treasury securities, the yield on 10-year notes increased by about 60 basis points

in the first part of March 2020. As discussed by He, Nagel, and Song (2022) and Vissing-Jorgensen

(2021), concerns about default risk or an increase in inflation do not explain this increase, sug-

gesting that forced sales and the market’s inability to easily absorb them were responsible for the

spike in yields. Different from corporate bonds, however, dealers played a more relevant role.

Duffie (2020) and He, Nagel, and Song (2022) argue that a large part of Treasury sales were ab-

sorbed by dealers either directly or through an expansion of their repo financing to levered investors.

Nonetheless, some facts are hard to explain by appealing solely to the role of dealers and are instead

consistent with our model. In particular, the evidence points to larger distress in segments of the

markets that were characterized by lower liquidity, such as longer-term and off-the-run securities

5Kargar et al. (2021) document an increase in so-called agency trades, in which dealers help buyers and sellers to
find counterparties but do not take a position on the asset. The point we want to emphasize is that dealers did not absorb
the increased supply of corporate bonds on the market.
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Figure 1: Evolution of the on-the-run spread
Spread between off- and on-the-run constant maturity 10-year Treasury yields (in percentages). For on-the-run yields,
we use data from the par yield curve constructed by the Treasury department and based on the most recently auctioned
securities. For off-the-run yields, we consider the corresponding par yield curve constructed by Gürkaynak, Sack, and
Wright (2007), which is built using Treasury yield data other than on- and first off-the-run issues.

(He, Nagel, and Song, 2022; Fleming and Ruela, 2020; Ma, Xiao, and Zeng, 2022).6

Motivated by this evidence, Figure 1 plots the evolution of the on-the-run premium (i.e., the

spread between yields on off- and on-the-run securities), focusing on 10-year notes.7 The on-

the-run premium is a well-known feature of the Treasury market (Krishnamurthy, 2002; Pancost,

2021), and on-the-run securities typically trade at lower yields (i.e., higher prices) than otherwise

equivalent off-the-run securities. The lower yield of on-the-run securities is often explained by

higher liquidity and the ability to obtain repo financing at better rates (Duffie, 1996; Vayanos and

Weill, 2008). In the first half of March 2020, the on-the-run spread increased by about 10 basis

points, as shown in Figure 1.

The increase in the on-the-run premium in March 2020 is consistent with the cross-sectional

predictions of the model. In the context of the model, the on-the-run premium corresponds to the

spread between long-term liquid and illiquid securities, which increases in times of fire sales, as

discussed before. That is, yields on long-term off-the-run securities increased more than those of

6For any given maturity, on-the-run securities were the most recently auctioned, while all others were off-the-run.
7We construct the on-the-run premium by considering two otherwise equivalent on- and off-the-run securities. For

on-the-run yields, we use data from the par yield curve constructed by the Treasury Department and based on the most
recently auctioned securities. For off-the-run yields, we consider the corresponding par yield curve constructed by
Gürkaynak, Sack, and Wright (2007), which is built using Treasury yield data other than on-the-run and first off-the-
run issues. For details about the methodology used by the Treasury department, see https://home.treasury.gov/policy-
issues/financing-the-government/interest-rate-statistics/treasury-yield-curve-methodology.
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on-the-run securities, given the different reselling frictions at t = 1. Two observations reinforce

the link between the model and the empirical evidence. First, explanations of the March 2020

Treasury selloffs based solely on dealers’ balance sheet constraints (He, Nagel, and Song, 2022)

cannot explain why prices dropped more for off-the-run securities.8 Second, D’Amico and Pancost

(2022) document a compression of the spread between repo rates with off-the-run versus on-the-

run collateral. Absent other forces, this spread compression should have reduced the on-the-run

premium as the gap in repo rates using on- versus off-the-run collateral became less important.9

3 Ex ante investments, efficiency, and policy

We now extend the model to include period t = −1, in which the buyers and sellers decide how

to allocate their endowments between liquid and long-term assets. The main objective is to ask

whether the choices the buyers and sellers make at t = −1 are efficient and whether regulatory

interventions can improve the equilibrium outcome. Following Lorenzoni (2008), Dávila and Ko-

rinek (2018), Kurlat (2021), and the broad fire-sale literature, we focus on a regulator that can affect

investors’ portfolio choices at t = −1 but that takes as given asset trading and other decisions that

take place in subsequent periods. In our model, the regulator takes as given trading and choices at

t = 0, 1, 2. In this sense, the policy analysis is well-suited to study the SEC’s proposal about the

liquidity requirements on MMMFs and mutual funds. Our analysis is thus complementary to that

of a large literature that focuses on ex post interventions, such as central bank liquidity injections

during crisis times (Bianchi and Bigio, 2022; Gale and Yorulmazer, 2013; Robatto, 2023).

Our results differ substantially from those derived in other fire-sale models, in which equilib-

rium is typically inefficient and regulatory interventions are welfare improving. In our framework,

the choices made by investors at time t = −1 in the decentralized equilibrium are the same as those

made by the planner; that is, the equilibrium is constrained efficient under some conditions that we

8He, Nagel, and Song (2022) note that investors’ exposure to liquidity shocks can interact with the limited balance
sheet capacity of the dealers at the center of their model, but these authors do not formalize such considerations in their
analysis.

9As noted by D’Amico and Pancost (2022), analyzing the dynamic of the repo spread is complicated by the sea-
sonality induced by the auction cycle in the primary market: the spread spikes just before an auction and then drops
dramatically. In March 2020, the seasonal dynamic of the spread followed this standard pattern around the 10-year
Treasury note auction announced on March 5 and concluded on March 11. Yet the off-the-run premium remained
elevated after this date, despite the subsequent compression of the repo spread to pre-auction levels. In fact, the highest
value of the on-the-run premium in Figure 1 occurred on March 19, after the auction was concluded. We thank Aaron
Pancost for his extensive discussions and clarifications about this point.
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argue are likely to hold in practice if one maps the sellers to mutual funds or MMMFs. As a result,

no regulatory intervention is required; that is, the model predicts that the liquidity requirements

proposed by the SEC are welfare reducing for at least some agents.

Before formalizing the results in the next section, we briefly discuss what drives the difference

in comparison to the other fire-sale models in the literature. In particular, we discuss the differ-

ences in comparison to models of fire sales with collateral constraints and models of fire sales with

asymmetric information.

In models with collateral constraints, such as Lorenzoni (2008), price-dependent constraints

give rise to what Dávila and Korinek (2018) refer to as collateral externalities. In contrast, the

investors in our model are not subject to collateral constraints and, thus, these types of externalities

do not arise here. There are of course situations, in practice, in which collateral constraints are

relevant for fire sales. But for MMMFs and mutual funds—which correspond to the sellers in our

model—these constraints do not seem relevant. We note, however, that even if our baseline model

does not include collateral constraints, our liquidity risk pricing still applies if we extend the model

to include such constraints, as we do in Section 4.

In fire-sale models with asymmetric information, such as Kurlat (2021), there might be low

investment in long-term assets because of concerns of selling these assets to uninformed buyers

that are willing to pay a low price due to adverse selection. Our model does not have information

frictions, so this issue does not arise either. Along the lines of what we noted before, in practice

there are situations wherein fire sales involve assets for which buyers might have limited informa-

tion about future cash flows. But this is arguably not the case for highly rated corporate bonds and

Treasury securities. These assets represent an important fraction of the MMMFs and mutual fund

sector that the SEC wants to subject to liquidity regulation.

We now turn to our formal analysis and, after presenting the results, we discuss additional

details and the intuition behind our results.

3.1 Extended model and choices at time t = −1

We extend the model by adding period t = −1 in which the buyers and sellers endogenously choose

their portfolio holdings of liquidity and long-term assets. This section characterizes the buyers and

sellers’ choices in an unregulated equilibrium, and Section 3.2 analyzes the problem of a planner

(or regulator). The main result, presented in Section 3.2, is that the unregulated equilibrium is

constrained efficient, under conditions that we argue hold in practice.
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Because our main result is that the unregulated equilibrium is efficient and no regulation is

needed, we consider an extended version of the model presented in Section 2. The objective is to

show that our message is not just the by-product of the simple structure employed in Section 2.

We extend the model along three dimensions: (i) we consider general buyers and sellers’ util-

ities U b(c0, c1, c2; ε) and U s(c0, c1, c2), where ε parameterizes buyers’ preference shocks; (ii) we

allow a richer market structure at t = 1, although we maintain the assumption that there are some

trading frictions that make resale difficult; and (iii) we allow for a general distribution of the with-

drawal shock γ, captured by the cumulative density function (CDF) F (γ). In principle, we could

add additional sources of shocks, such as shocks to the return of the long-term asset, but they would

not alter the results and, thus, we omit them. Under these assumptions, the outcomes at t = 0, 1, 2

are qualitatively identical to those of the baseline model and we provide them in Appendix C.10

Here, we focus on the choices of investors at t = −1 and, in the next section, we focus on studying

whether the planner wants to impose regulation at t = −1.

At t = −1, buyers and sellers have endowments eb and es, respectively, and allocate them to

liquid and long-term assets, subject to the budget constraints

lb−1 + kb
−1 ≤ eb (13)

and

ls−1 + ks
−1 ≤ es + ds−1, (14)

respectively. We take as given ds−1 and focus on the choices of
{
lb−1, k

b
−1, l

s
−1, k

s
−1

}
.11

We begin by analyzing the buyers’ problem at t = −1. Let V b
0

(
lb−1, k

b
−1, d

b
−1

)
denote their

indirect utility function at t = 0, that is,

V b
0

(
lb−1, k

b
−1

)
= Eε

[
U b

(
cb0, c

b
1, c

b
2; ε

)]
+ λb

0

[(
lb−1 + q0k

b
−1

)
−
(
lb0 + q0k

b
0 + cb0

)]
, (15)

where the first term on the right-hand side is the utility evaluated at the optimal consumption choices

10We assume that the utility functions are well behaved so that the equilibrium exists; see the discussion in Appendix
C. We also assume that, in such an equilibrium, states with and without fire sales (in the sense of equilibrium prices
q0 < R and q0 = R) both have positive probabilities.

11Regarding ds−1, one can assume that there is a mass of external agents that may deposit their endowments with
sellers. Assuming that the external agents have access only to the storage technology and are risk neutral and that
sellers can make a take-it-or-leave-it offer, sellers will offer a zero return on deposits and ds−1 will be equal to these
sellers’ total endowment.
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and the second term is the product of the Lagrange multiplier of the time-0 budget constraint, λb
0,

and the time-0 budget constraint itself (i.e., buyers use the liquidity lb−1 and long-term asset kb
−1

purchased at t = −1 to invest in liquidity lb0, long-term asset kb
0, and consumption cb0).

Buyers choose the t = −1 liquidity lb−1 and the long-term asset holdings kb
−1 to maximize their

expected indirect utility function

max
lb−1,k

b
−1

E−1

{
V b
0

(
lb−1, k

b
−1

)}
, (16)

subject to the budget constraint (13). The problem in (16) is easy to analyze because we can exploit

the envelope theorem to obtain the first-order condition

E−1

{
λb
0 [q0 − 1]

}
= 0. (17)

This is a standard asset-pricing equation for the excess return, q0 − 1, of investing in the long-term

asset, as opposed to investing in the liquid asset, evaluated according to the marginal utility of

wealth. The latter is given by the Lagrange multiplier of the time-0 budget constraint, λb
0.

Next, we analyse the sellers, whose choices are very similar to those of the buyers. The sellers’

indirect utility function at t = 0 is

V s
0

(
lb−1, k

b
−1, d

s
−1

)
= U s (cs0, c

s
1, c

s
2)+λs

0

[(
ls−1 + q0k

s
−1

)
−
(
ls0 + q0k

s
0 + cs0 + γ ds−1

)]
+µs

0l
s
0. (18)

The first term on the right-hand side is the utility evaluated at the optimal consumption choices,

the second term is the Lagrange multiplier of the time-0 budget constraint, λs
0, times the budget

constraint itself, and the last term is the Lagrange multiplier of the non-negative constraint on

liquidity holdings, µs
0, times such holdings, ls0. Similar to the buyers, the sellers use liquidity ls−1

and long-term asset ks
−1, which they purchased at t = −1, to invest in liquidity ls0, long-term asset

ks
0, and consumption cs0, but they also face withdrawals γ ds−1.

The sellers choose liquidity ls−1 and long-term asset holdings ks
−1 to maximize their expected

indirect utility function

max
ls−1,k

s
−1

E−1

{
V s
0

(
ls−1, k

s
−1

)}
, (19)

subject to the budget constraint (14). The first-order condition is very similar to that obtained in
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(17), that is,

E−1 {λs
0 [q0 − 1]} = 0, (20)

and it has the same interpretation discussed for (17).

Without further specifying the utility functions and the CDF F (·) of the withdrawal shocks,

γ, we cannot characterize in more detail the choices at t = −1. Appendix D characterizes such

choices, using the functional forms employed in the baseline model of Section 2, and the next

section continues with an analysis of the more general framework to study whether regulatory

intervention can improve welfare.

3.2 Efficiency analysis: Do regulatory interventions improve welfare?

We now study whether the equilibrium is efficient, that is, if the equilibrium allocation corresponds

to that chosen by a planner/regulator that internalizes the effects of the portfolio choices at t = −1

on the fire-sale price at t = 0. Unlike several fire-sale models in the literature, the equilibrium

here is efficient under weak conditions that we argue hold if one interprets the sellers as mutual

funds or MMMFs. Hence, regulatory interventions are not needed and, if implemented, they hurt

the economy.

We use a standard approach employed in the fire-sale literature. Various papers such Lorenzoni

(2008), Dávila and Korinek (2018), and Kurlat (2021) consider a planner/regulator that makes the

initial portfolio choices (in our model, the choices at t = −1) but has no influence on the trading and

the choices that occur in the following time periods (in our model, from t = 0 onward). Depending

on the outcome, the literature identifies tools such as capital and liquidity requirements and taxes

or subsidies that can be imposed on investors to implement the regulator’s solution. By following

the same approach, our results are easily comparable with the literature. In addition, this approach

has a good fit with the analysis of actual policies such as liquidity requirements, including those

proposed by the SEC. These interventions are imposed before the possible realization of fire sales

(i.e., at time t = −1 in our model).

Before presenting the details, we want to clarify the type of analysis we are conducting. Our

model—like those in several fire-sale papers in the literature—has two sets of agents (i.e., the

buyers and the sellers). We thus use the concept of Pareto optimal regulatory interventions; that is,

we say that a policy is beneficial if the planner can improve the welfare of one set of agents without

hurting the welfare of the other. Consistent with this approach, we use the following definition of
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(constrained) efficiency.

Definition. An equilibrium is constrained efficient if no regulatory intervention at t = −1 can

improve the welfare of the buyers, the sellers, or both.

Formally, we consider the problem of a planner/regulator (which we simply refer to as a ‘reg-

ulator) that maximizes the welfare of both the buyers and the sellers, with a Pareto weight of ξ for

the buyers and a Pareto weight normalized to one for the sellers. As noted before, we demonstrate

that the equilibrium is constrained efficient under some conditions. We obtain this result by show-

ing that there exists a Pareto weight such that the solution of the regulator’s problem is the same

as the allocation of the decentralized equilibrium. In other words, we show that the decentralized

equilibrium with no interventions is on the Pareto frontier.

We are now ready to state the regulator’s problem. At t = −1, the regulator chooses the

investments in liquidity and long-term assets of the buyers, lb−1 and kb
−1, as well as those of the

sellers, ls−1 and ks
−1, to solve the following problem

max
ls−1,k

s
−1

lb−1,k
b
−1

E−1

{
V s
0

(
ls−1, k

s
−1, d

s
−1; q0

)}
+ ξE−1

{
V b
0

(
lb−1, k

b
−1, d

b
−1; q0

)}
(21)

where V s
0 and V b

0 are the sellers and buyers’ indirect utility functions, defined in (18) and (15),

respectively, and ξ is the buyers’ Pareto weight, as noted before. Maximization is subject to the

budget constraint

(
lb−1 + kb

−1

)
+
(
ls−1 + ks

−1

)
≤

(
eb + es

)
+
(
ds−1 − db−1

)
. (22)

The key difference in comparison to the buyers and sellers’ individual problems is that the planner

accounts for the effects its choices have on the time-0 price of the long-term asset, q0. We return to

this point in Proposition 3.1.

The first-order conditions relative to the buyers’ choices of liquidity and long-term asset hold-

ings, lb−1 and kb
−1, imply

E−1

{
ξλb

0 (q0 − 1) +

(
∂q0
∂kb

−1

− ∂q0
∂lb−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
= 0. (23)
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Similarly, for the sellers’ choice of holdings, we obtain

E−1

{
λs
0 (q0 − 1) +

(
∂q0
∂ks

−1

− ∂q0
∂ls−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
= 0. (24)

Note that we use the market clearing condition kb
0 + ks

0 = kb
−1 + ks

−1 to derive and simplify the

above conditions.

To discuss these optimality conditions and our main result about the efficiency of the equilib-

rium, we proceed in steps. First, we highlight that the regulator’s problem differs from that of the

private agents because the regulator internalizes the effects of its choices on the time-0 price q0, as

noted before; this is reflected by the second term in the expectation in each of the first-order con-

ditions. Second, we discuss how the regulator’s first-order conditions compare with those of the

private agents, linking our results with Dávila and Korinek (2018). Third, we provide sufficient con-

ditions under which the equilibrium is constrained efficient and we discuss such conditions when

applying our model to the analysis of the liquidity requirements the SEC proposed for MMMFs

and mutual funds.

We begin by formalizing that if the regulator disregards the effects of its choices on the time-0

price, q0, then the regulator’s choices are the same as those of the private agents. This is because

the only channel through which the regulator’s problem differs from that of the private investor is

that where the regulator internalizes the effects of its choices on the time-0 price, q0.

Proposition 3.1. (Effect of internalizing the impact of the regulator’s choices on time-0 prices.)

If ∂q0/∂lj−1 = 0 and ∂q0/∂kj−1 = 0 for j ∈ {b, s}, the regulator’s first-order conditions (23) and (24)

are the same as the sellers and buyers’ first-order conditions in the unregulated equilibrium, as

shown in Equations (17) and (20).

We now analyze the differences between the regulator’s optimality conditions and those of

the private agents. The fact that the regulator internalizes the effects of its choices on the time-0

price, q0, can introduce a wedge between the regulator and the private agents’ choices, which are

captured by the second term in the expectations in Equations (23) and (24). This wedge depends

on the product of the three elements that are described by the next proposition.

Proposition 3.2. (Regulator versus investors’ choices.) The difference between the regulator’s

choices and those of the unregulated equilibrium depends on the expectation of the product of three

elements:
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• The sensitivity of the time-0 price, q0, with respect to the t = −1 liquidity choices lb−1 and

ls−1 and with respect to the t = −1 choices of long-term asset holdings kb
−1 and ks

−1, that is,
∂q0/∂lb−1, ∂q0/∂kb−1, ∂q0/∂ls−1, ∂q0/∂ks−1, ;

• The difference between the marginal utility of the wealth of the buyers, λb
0, and the sellers,

λs
0, adjusted by the Pareto weight ξ: ξλb

0 − λs
0; and

• The sellers’ purchases of long-term assets ks
0 − ks

−1 (or sales, if negative).

The three elements listed in Proposition 3.2—which affect the wedge between the unregulated

choices and the planner’s choices—are similar to those identified by Dávila and Korinek (2018) in

regard to what they refer to as distributive externalities. We first explain the concept of distributive

externalities, then we discuss how they can arise in our framework, and finally we provide sufficient

conditions under which these externalities are actually absent, so that the equilibrium is efficient.

Distributive externalities arise in general when the marginal rate of substitution between the

dates or the states differs across agents. To clarify the notion of distributive externalities, consider

the following example. Say that the buyers and sellers have the same marginal utility of wealth in

normal times but the sellers’ marginal utility is much higher in fire-sale states. Say also that the

regulator can tilt the portfolio decisions at t = −1 in a way that changes the time-0 price, q0, during

fire sales. If the price change increases the sellers’ wealth, the intervention improves welfare by

redistributing resources to those that value them the most.12

Because distributive externalities can arise in our framework, the equilibrium is generically not

efficient. There are, however, important differences in comparison to the distributive externalities

identified in the fire-sale framework of Dávila and Korinek (2018), and these differences lead to

very different efficiency and policy implications. The model of Dávila and Korinek (2018) includes

collateral constraints and assumes that the buyers can extract a lower cash flow from financial as-

sets, relative to the sellers. In that setting, the distributive externalities can be due to binding col-

lateral constraints or incomplete markets. Here, collateral constraints are absent and, thus, the only

sources of distributive externalities are just the standard effects of incomplete markets (Geanakop-

los and Polemarchakis, 1986). This difference is not only conceptual but it also allows us to easily

derive conditions under which efficiency holds. We argue that such conditions are likely to hold in

practice when applying our model to the analysis of MMMFs and mutual funds.

12If the general equilibrium effect reduces the buyers’ welfare, the regulator can use transfers at t = −1 to offset
this effect. When distributive externalities are present, it is typically possible to obtain a net increase in welfare for at
least one set of agents while keeping the other agents’ welfare unchanged through transfers.
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We now provide sufficient conditions under which equilibrium is efficient—in the sense that a

regulatory intervention at t = −1 does not improve welfare. We begin, in Proposition 3.3, with the

benchmark in which markets between t = −1 and t = 0 are complete. This case is stated mainly for

conceptual reasons; markets are typically incomplete in practice, so we turn to alternative sufficient

conditions in Proposition 3.4 that are more likely to hold in practice.

Proposition 3.3. (Complete markets and efficiency.) If the support of γ includes only two values,

the unregulated equilibrium is constrained efficient.

When the condition of Proposition 3.3 holds, the equilibrium is efficient because the number

of states at t = 0 (i.e., two) is equal to the number of assets that can be traded at t = −1 (i.e.,

the liquid asset and the long-term asset). The result that market completeness guarantees efficiency

also holds in Allen and Gale (2004) and Dávila and Korinek (2018). We are stating this result

just for comparison and as a benchmark for the discussion, but the complete-market assumption

likely does not hold in practice. Hence, the next proposition provides alternative conditions that

guarantee the efficiency of the unregulated equilibrium without relying on complete markets. We

then describe each condition in detail.

Proposition 3.4. (Other sufficient conditions for efficient equilibrium.)

(i) Linear utility at t = 2: If the buyers and sellers have linear utility in time-2 consumption

(i.e., if ∂Ub/∂cb2 = κb and ∂Us/∂cs2 = κs for some κb, κs > 0), the unregulated equilibrium is

constrained efficient.

(ii) Fire sales only in one state: If a fire-sale price q0 < R arises only in one state (i.e., only for

one realization of γ), the equilibrium is constrained efficient.

(iii) No wealth effects on liquidity demand: Denoting W j
0 = lj−1 + q0k

j
−1 to be the wealth of

agent j ∈ {b, s}, if the demand for liquidity is not affected by wealth (i.e., if ∂lj0/∂W j
0 = 0 for

j ∈ {b, s}), the equilibrium is constrained efficient provided that, in fire-sale states, liquidity

demand is downward sloping and sellers sell some of their long-term asset holdings at t = 0.

Item (i) of Proposition 3.4 states that the equilibrium is efficient if the buyers and sellers have

linear utility at t = 2. To clarify this result, let us focus on the case in which both the buyers

and the sellers have linear utility at t = 2, with a marginal utility of one. In this case, a dollar is

valued equally by both—formally, the buyers and sellers have the same marginal utility of wealth.
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Intuitively, the linear utility in time-2 consumption implies that any redistribution of wealth that is

implicitly generated by fire sales is irrelevant because a dollar has the same utility value to both the

buyers and the sellers. Similarly, policy interventions that transfer wealth from buyers to sellers (or

vice versa) are also ineffective.

In practice, the assumption of the linear utility of consumption for buyers and sellers could

be reasonable when applied to the MMMFs that experienced large redemptions in both 2008 and

2020—those that targeted institutional (wealthy) investors. The potential buyers of the assets sold

by these funds were also likely to have been wealthy investors because the assets required the ability

to trade in OTC markets. As a result, the assumption of linear utility could have applied in prac-

tice. Under this assumption, a dollar would have been worth the same to both buyers and sellers.

This would likely have been the case because they were both sophisticated, wealthy, sophisticated

investors.

Item (ii) of Proposition 3.4 states that if only one level of withdrawals, γ, leads to fire sales, the

equilibrium is efficient, even if the withdrawal shock, γ, can take many values and the markets are

incomplete. While this might be a strong assumption in general, it fits the case in which selling

pressure is driven by runs, which tend to be all-or-nothing phenomena. In both 2008 and 2020,

prime MMMFs were subject to runs, especially prime institutional funds (Duygan-Bump et al.,

2013; Li et al., 2021), and the Federal Reserve stepped in by creating liquidity facilities. Ultimately,

the withdrawals from these funds amounted to exactly 30% of their assets under management in

both 2008 and 2020. It could be just a coincidence that we observed the same withdrawals from

MMMFs in both 2008 and 2020. But the outcome could have been the result of structural features

such as the speed at which prime institutional MMMFs holders reacted to news and runs, and the

time it took for the central bank to set up a liquidity facility to stop a run, which might have been a

similar case in 2008 and 2020. Formally, the shock, γ, is a reduced-form way to capture how these

features translate into withdrawals from MMMFs. If these structural features do not experience

substantial changes, a possible future run might end up producing similar withdrawals, and the

assumption that there is only one withdrawal level that triggers fire sales might be a reasonable

approximation.

The logic behind the result of item (ii) is related to the sensitivity of q0 to the choices at t = −1.

In fire-sale states, the time-0 price, q0, is sensitive to the amount of liquidity carried by investors

from t = −1. But in states with no fire sales, this sensitivity drops to zero. This is because the

liquidity needs of the buyers are fully met when fire sales do not arise, so that their liquidity holdings
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are irrelevant on the margin. This feature makes the equilibrium outcomes essentially equivalent to

the case in which there are only two states and the markets are complete (see Proposition 3.3), in

the sense that one can compute the time-0 price by essentially collapsing the support of γ into two

values—one for a state with no fire sales and one for a state with fire sales.

Item (iii) precludes the existence of wealth effects on buyers and sellers’ liquidity demand.

To understand the role of this assumption, note first that the regulatory interventions at t = −1

alter the time-0 relative supply of liquid assets and affect of investors’ wealth at the beginning

of t = 0. Without the wealth effects, however, the regulatory interventions have an impact only

through changes in the supply of time-0 assets. Crucially, any given change can be obtained by

targeting buyers or sellers; that is, the identity of the entity that brings, say, more liquidity to the

time-0 market is irrelevant. In this sense, buyers and sellers are identical in the eyes of the regulator

(up to a scaling factor given by the Pareto weight), and this symmetry removes the scope for Pareto-

improving interventions.13

The condition in item (iii) is relevant in relation to a key difference in comparison to other mod-

els in the literature. In models with cash-in-the-market pricing, the buyers’ demand is constrained

by their wealth, so that an increase in the buyers’ wealth has a first-order effect on prices. Relat-

edly, in models with second-best use and collateral constraints, an increase in the sellers’ wealth

typically leads to a bigger change in prices. The higher wealth relaxes the collateral constraints

and, thus, limits fire sales and the sellers have a higher willingness to pay relative to the buyers

because they can extract a higher cash flow. Because of these features, the assumption in item (iii)

typically does not hold in other fire-sale models but it can hold in ours.

To sum up, the results of this section have important policy implications. The ex ante investment

decisions of price-taking agents that face possible fire-sale prices are efficient—under conditions

that we argue apply to MMMFs and mutual funds—and regulations such as liquidity requirements

do not lead to Pareto improvement and might even reduce overall welfare.

4 Fire sales and liquidity risk pricing in other applications

In our baseline model of Section 2, we illustrated our theory of fire sales based on liquidity risk

pricing in the context of a simple framework in which the sellers can be interpreted as banks,

13Note that item (iii) is conceptually different from (i). In our baseline model, quasi-linear utility implies that both (i)
and (iii) hold. But in the model in Appendix A, the sellers have strictly concave utility—so that (i) does not hold—but
(iii) holds anyway because the sellers’ demand for liquidity is constrained at zero by a non-shorting condition.
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MMMFs, or mutual funds that are subject to exogenous redemption shocks. The liquidity risk

pricing at the core of our theory, however, is more general and can be used to study fire sales in

several other applications with different sources of forced sales.

The main objective of this section is to show that the liquidity risk mechanism that gives rise to

buyers’ low willingness to pay in a fire sale can be combined with several channels that generate the

selling pressure of the long-term asset. In the baseline model of Section 2, the selling pressure is

triggered by exogenous withdrawal shocks that affect the buyers. In the application of Section 4.1,

the sellers are subject to a collateral constraint and the selling pressure is triggered by an exogenous

shock that tightens such a constraint. In the application of Section 4.2, we consider banks that can

be subject to runs. In this case, the selling pressure is the result of a bank run that forces banks to

liquidate their holdings of the long-term asset.

The applications we present here are relevant in practice. Fire sales in some empirical instances

have been linked with binding collateral constraints, such as in the case of insurance companies in

2008 (Merrill et al., 2021), and bank runs are common in times of acute crisis; examples include the

runs on MMMFs in September 2008 and March 2020, or those on Silicon Valley Bank and First

Republic Bank in 2023 (Duygan-Bump et al., 2013; Jiang et al., 2023; Li et al., 2021; Schmidt,

Timmermann, and Wermers, 2016).

Before turning to our analysis, we note that the source of the selling pressure might affect the

efficiency of the equilibrium and the need for regulatory interventions even if it is irrelevant to

generate fire sales with liquidity risk pricing. We briefly discuss this issue, but we leave to future

research a full analysis of regulatory interventions for the extensions presented in this section. For

instance, the version of the model with a collateral constraint (Section 4.1) is likely characterized

by externalities related to such a constraint, which are instead absent in our baseline model. That

said, there is an important difference in comparison to collateral externalities that arise in other

fire-sale models in the literature. In models with second-best use, collateral constraints that affect

sellers’ behavior imply that long-term assets are sold to buyers with (exogenously) less ability to

extract cash flow. Here, the collateral constraint that affects sellers might force such agents to sell

assets in a fire sale, draining liquidity from the market and (endogenously) reducing buyers’ ability

to self-insure against liquidity/preference shocks. Ultimately, as noted by Kurlat (2021), efficiency

analysis is heavily affected by the relation between forced sales and buyers’ asset pricing condi-

tions. This means that determining the microeconomic model that bests fits any given application

is required to study efficiency and provide adequate policy implications.
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4.1 Liquidity risk pricing and collateral constraints

This section modifies the baseline model along two dimensions: We include a collateral constraint

that affects the sellers and we replace the withdrawal shocks with shocks to the terminal payoff,

R, of the long-term asset. As noted in the previous section, the broad objective is to show that the

liquidity risk pricing mechanism introduced in Section 2 can be coupled with other channels that

give rise to high selling pressure.

A fire sale in this model arises when a negative shock reduces the payoff of the long-term asset

to a sufficiently low level. The low payoff reduces the value of the long-term asset, tightening

the sellers’ collateral constraints and forcing them to sell some of their holdings of such assets,

which in turn reduces the price of the long-term asset even more. When this high selling pressure

materializes, the buyers’ low willingness to pay arises from the same channel used in the baseline

model of Section 2. That is, as the sellers sell the long-term asset and drain liquidity from the

market, the buyers’ holdings of liquidity drop, exposing them to a liquidity risk/preference shock

that might hit them at t = 1.

Model. The timing and structure of the preferences, technology, endowments, and markets are the

same as in the baseline model of Section 2, with a few differences. First, there are no withdrawal

shocks (i.e., γ = 0 in all states). Second, the return R of the long-term asset is stochastic and

is realized at the beginning, at t = 0, taking values RH and RL with probabilities 1 − π and π,

respectively, with RH > 1 > RL > 0. Third, the sellers are subject to a time-0 collateral constraint

of the form

ζ (q0k
s
0) ≤ q0k

s
−1 + ls−1 − ds−1. (25)

This constraint has two possible interpretations. First, it can be viewed as a risk-weighted capital

requirement, with a zero risk weight on liquid assets, a 100% risk weight on long-term assets, and

a capital requirement ζ . Note that the right-hand side of (25) is the sellers’ equity at t = 0. This

is in line with the interpretation of sellers as insurance companies, which sold mortgage-backed

securities (MBS) at fire-sale prices in 2008 (Merrill et al., 2021). Alternatively, the constraint can

be derived by assuming limited commitment along the lines of Lorenzoni (2008), as discussed in

Appendix E.
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Parameter restrictions. We normalize the initial endowment of the sellers’ liquidity to ls−1 = 0

and the sellers’ long-term asset to

ks
−1 =

ds−1

1− ζ
. (26)

The value of the endowment of ks
−1 can be derived endogenously by adding a period t = −1 (along

the lines of Section 3.1) and assuming that the sellers are subject to a collateral constraint of the

same form as (25) at t = −1:

ζ
(
ks
−1

)
= ks

−1 + ls−1 − ds−1. (27)

This constraint can again be interpreted as a capital requirement or as arising from limited commit-

ment (see Appendix E).

We normalize the buyers’ initial holdings of liquidity to lb−1 = 1. As in the baseline model, no

restrictions are imposed on the buyers’ initial holdings of the long-term asset, kb
−1.

Finally, we assume that the collateral constraint is sufficiently tight—otherwise its effects would

not be strong enough to obtain a fire sale. More precisely, we require that the parameter, ζ , satisfies

ζ > 1− RL (1− d)

(1− θd)
. (28)

Buyers and sellers’ choices. The analysis of the buyers is the same as that in the baseline model;

see Section 2.4. In particular, the price, q0, that they are willing to pay is given by Equation (5).

Regarding the sellers, their time-0 problem is different from that in the baseline model because

of the collateral constraint (25). Thus, they solve the problem

max
ls0,k

s
0

Rks
0 + ls0 − d−1, R ∈ {RH , RL}

subject to the collateral constraint in Equation (25) and the budget constraint q0ks
0 + ls0 ≤ q0k

s
−1.

A seller’s optimal choice depends on whether the collateral constraint is binding. When the

constraint is not binding, the sellers’ choices are the same as in the baseline model; that is, they

hold no liquidity and invest everything in the long-term asset: ls0 = 0 and ks
0 = q0ks−1/q0. When the

collateral constraint is binding, the seller’s choices are

ls0 =
ds−1 (1− q0)

ζ
, ks

0 =
ds−1 [q0 − (1− ζ)]

q0 (1− ζ) ζ
. (29)
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Note that the collateral constraint is binding when the price of the long-term asset is q0 < 1.14

Equilibrium. Given a realization of the return R ∈ {RH , RL}, an equilibrium is a collection of

the buyers’ choices, the sellers’ choices, and the time-0 price, q0, such that the time-0 market for

liquidity clears, lb0 + ls0 = lb−1, and the time-0 market for the long-term asset clears, kb
0 + ks

0 =

kb
−1 + ks

−1.

We begin by solving the equilibrium when the realization of the long-term asset is RH > 1. In

this case, the equilibrium is essentially the same as that of the baseline with no fire sales (i.e., the

case where γ = 0 in the baseline model). This is because the sellers’ collateral constraint is not

binding and they do not engage in any sale of their long-term asset holdings, as formalized by the

next proposition.

Proposition 4.1. (Equilibrium with collateral constraints and no fire sales) If R = RH > 1, there

exists an equilibrium in which the time-0 price of the long-term asset is q0 = RH > 1, the sellers’

collateral constraint (25) is not binding, the buyers and sellers do not engage in trades at t = 0

(i.e., lb0 = 1 and kb
0 = kb

−1 for the buyers, and ls0 = 0 and ks
0 = ks

−1 for the sellers), and the time-1

consumption of the buyers that are hit by the preference shock is cb1 = 1.

Next, consider the case in which the return of the long-term asset is RL < 1. The low return of

the long-term asset depresses its price, tightening the sellers’ collateral constraint (25). As a result,

the sellers are forced to sell some of their holdings of the long-term asset, draining liquidity from

the market. Similar to the baseline, the buyers end up with smaller liquidity holdings and, thus,

are exposed to time-1 preference shocks. As a result, a fire sale arises: the liquidity risk pricing

reduces the time-0 price of the long-term asset below its payoff, RL, that is, q0 < RL. The next

proposition formalizes this result.

Proposition 4.2. (Equilibrium with collateral constraints and fire sales.) If R = RL < 1, there

exists an equilibrium with fire sales; that is, the time-0 price of the long-term asset is q0 < RL,

the sellers’ collateral constraint (25) is binding, they remain solvent (i.e., their net worth q0k
s
−1 +

ls−1 − ds−1 is strictly positive), and they sell part of their endowment of the long-term asset and

accumulate liquidity at t = 0 (i.e., ks
0 < ks

−1 and ls0 > 0); the buyers increase their holdings of the

long-term asset and reduce their holdings of liquidity at t = 0 (i.e., kb
0 > kb

−1 and lb0 < 1), and their

time-1 consumption that is hit by the preference shock is cb1 < 1.

14This can derived using Equation (25) evaluated with equality, the value of endowments ks−1 in (26), and ls−1 = 0.
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To sum up, the results show that fire sales based on liquidity risk pricing can be coupled with

different sources of forced sales—not only sellers’ exogenous shocks, as in the baseline model, but

also a tightening of sellers’ collateral constraint, as in the model of this section. The next section

presents yet another source of forced sales that can be combined with liquidity risk pricing, that is,

a bank run.

4.2 Liquidity risk pricing and bank runs

We now present a model that embeds the liquidity risk pricing introduced in our baseline framework

of Section 2 into an otherwise standard model of bank runs along the lines of Diamond and Dybvig

(1983), hereafter, DD. The objective is to show that fire sales driven by liquidity risk pricing can

be combined with yet another source of selling pressure, this one arising from banks’ sales of their

long-term asset holdings because of a run.

A key element of this application is that the depositors are similar to the buyers of Section 2

and, thus, have some ability to trade in the time-0 market. In particular, during a run, depositors

not only withdraw from banks but they also purchase the long-term securities that are liquidated

by banks. Fire-sale prices arise because, as banks become insolvent, depositors lose the insurance

against future preference shocks that they would have had if banks had remained insolvent. Lacking

this insurance, they are willing to pay low fire-sale prices to purchase long-term assets, making

runs self-fulfilling events. An alternative approach to modeling runs would be to assume that the

depositors are unable to trade and, in a run, the banks sell their long-term assets to buyers that are

exposed to liquidity shocks. However, that approach is isomorphic to the model of Section 2, in

which the withdrawal γ parameterizes the extent of the bank run.

This model has other important similarities and differences in comparison to DD and to the

model of Section 2. Banks could be mapped into the sellers discussed in Section 2, although we

follow the standard approach of DD and the banking literature of modeling banks as firm-like

entities that compete with each other to attract depositors and earn zero profits in equilibrium. We

also use the same types of assets as in Section 2 (i.e., a liquid asset and a long-term asset) and

the same assumption about the lack of liquidation technology to transform long-term investments

into liquid assets after initial investments have been made—a departure from DD. Finally, we use

a market structure similar to that of the baseline model of Section 2 (i.e., a centralized market in

which fire sales could take place, followed by a period in which there are no markets and some

preference shocks are realized).
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4.2.1 Model

We follow a timing similar to that of the baseline model of Section 2, but we also include the period

in which ex ante investments are made, as in Section 3. Thus, there are four periods indexed by

t = −1, 0, 1, 2. Period t = 0 is when a fire sale might arise—as in Section 2—in conjunction with

a run. The technology is also the same as in the baseline model. That is, there is a liquid asset and

a long-term asset.

We depart from the baseline model by enriching the structure of the preferences and markets.

We do so to obtain that deposits are demandable at t = 0; we return to this point below.15

Preferences and endowments. The economy is populated by a continuum of agents, which we

refer to as depositors (denoted by the superscript d). At t = −1, the depositors are identical

and have endowment ed−1 = 1. Similar to the buyers of Section 2, the depositors are subject to

preference shocks but ones with a slightly different structure. At t = 0, some of the uncertainty

related to the preference shocks is realized and the ex ante identical depositors are divided into two

groups. A fraction, γ, of these depositors becomes very impatient, with a utility function, u
(
cd0
)
,

that only depends on consumption at time t = 0. The remaining 1 − γ fraction faces additional

preference shocks at t = 1, similar to DD and to the baseline model of Section 2. Specifically, they

become impatient with probability θ and patient with probability 1− θ, with utility function

Ud
(
cd1, c

d
2

)
=

u
(
cd1
)
+ βcd2 with probability θ

βcd2 with probability 1− θ,

where β is the discount factor. As in Section 2, we assume that u(c) = log c. All of the preference

shocks are independent and identically distributed across households and the law of large numbers

holds. Therefore, the masses of very impatient, impatient, and patient agents are represented by γ,

(1− γ)θ, and (1− γ)(1− θ), respectively.

The formulation of the preferences is slightly different from DD but the logic and implications

are similar. That is, very impatient and impatient agents have urgent needs to consume at t = 0 and

t = 1, respectively.

15Alternatively, one can impose the demandability at t = 0 exogenously and use the same structure of preferences
and markets as in Section 2.
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Banks. Banks (denoted by b) are established at t = −1 and liquidated at t = 2. Once established,

each depositor has access to their bank at all times t ∈ {0, 1, 2}. In Appendix F, we show that the

results are unchanged if new banks can be created at t = 0, to capture the idea that depositors might

be able to transfer the resources they withdraw in a run to other parts of the financial sector.

Markets. The market structure is similar to that of the baseline model (i.e., a centralized market

at t = 0 and a lack of markets at t = 1) but with a key difference: We assume that depositors have

limited market access at t = 0. Specifically, some depositors are hit by a shock at t = 0, which

makes them unable to trade in the centralized market—the realization is private information. To

simplify the exposition, we assume that this shock is perfectly correlated to the preference shock

that is realized at t = 0. In particular, the very impatient depositors that consume only at t = 0 are

also hit by the same shock that prevents them from trading in the centralized market. Appendix F

shows that the key results are unchanged if the time-0 preference and the market access shocks are

uncorrelated.

The above structure implies that banks collect deposits at t = −1 and allow for withdrawals on

demand at t = 0, 1, 2. Deposits are demandable at t = 0 and can offer liquidity to very impatient

agents—–with no market access—and deposits are also demandable at t = 1 and t = 2, as in

DD and other banking models. If we assume that all of these depositors have access to the time-0

market, then very impatient depositors could simply trade at t = 0 to reach the first-best level

of consumption (Jacklin, 1987), and banks could collect deposits at t = 0 from the remaining

depositors that are subject to the time-1 preference shock. This would eliminate the equilibrium

with bank runs in our setting.

Parameter restrictions We normalize the endowment of depositors to ed−1 = 1 and the return,

R, of the long-term asset to 1/β, with R > 1 and β < 1.

4.2.2 Good equilibrium

We define an equilibrium as a contract that specifies banks’ investments in liquid, lb−1, and long-

term assets, kb
−1 = 1− lb−1, as well as withdrawals, cd0, cd1, and cd2, for agents that report themselves

as very impatient, impatient, or patient, respectively; depositors and banks’ decisions regarding the

quantity of the liquid and long-term assets to be traded at t = 0; and a price, q0, that clears the

market at t = 0.
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The good equilibrium is standard. Banks offer a contract in which they collect endowments at

t = −1 and allow agents to withdraw at t = 0, t = 1, or t = 2. In equilibrium, very impatient

agents withdraw at t = 0, impatient agents withdraw at t = 1, and patient ones wait until t = 2 and

receive an equal share of the funds that are available at that time. The next proposition shows that

a Pareto optimal allocation is implemented in this equilibrium.

Proposition 4.3. (Good equilibrium) There exists an equilibrium in which banks offer a contract

that implements a Pareto optimal allocation, that is, lb−1 = γ + (1 − γ)θ, kb
−1 = (1 − γ)(1 − θ),

cd0 = cd1 = 1, and cd2 = R. In this equilibrium, the price q0 of the long-term asset at t = 0 is equal

to the payoff, R, discounted by β, q0 = βR (or, q0 = 1, using the normalization βR = 1).

The good equilibrium is similar to the equilibrium of the baseline model of Section 2 under the

realization of γ = 0, in which the buyers are able to get full insurance against their time-1 liquidity

risk. The proof (in Appendix B) is based on two steps. The first one is the standard argument that

the depositors truthfully report the realization of their preference shock. The other step deals with

trading in the time-0 market, which is novel in our environment. We elaborate more on this.

When banks solve for the contract they will offer to depositors, they solve for their portfolio

holdings at t = −1 and for the withdrawals, cd0, cd1, and cd2, they offer to depositors at t = 0, 1, 2,

respectively. In addition, banks can adjust their holdings of liquidity and the long-term asset at

t = 0, lb0 and kb
0. Thus, they solve the problem

max
lb−1,k

b
−1

[
max

lb0,k
b
0,c

d
0,c

d
1,c

d
2

γ u
(
cd0
)
+ (1− γ) θ u

(
cd1
)
+ β (1− γ) (1− θ) cd2

]
(30)

subject to the budget constraints at t = −1 and t = 0, given by lb−1 + kd
−1 ≤ 1 and γcd0 + lb0 +

q0k
b
0 ≤ lb−1 + q0k

d
−1, the feasibility constraint that restricts time-1 repayments to the depositors of

the liquidity, lb0, carried from t = 0, (1− γ) θcd1 ≤ lb0, and the time-2 repayments from the return

produced by the long-term asset, kb
0, carried from t = 0, (1− γ) (1− θ) cd2 ≤ Rkb

0.

The key and novel optimality condition of banks is a time-0 asset pricing condition similar to

that derived for the buyers in the baseline model, that is, Equation (5):

q0 = β
1

u′
(
cd1
) ×R. (31)

The banks’ pricing kernel discounts the payoff, R, of the long-term asset, using the marginal utility

of patient agents (i.e., one, discounted by β) in relation to that of the impatient agents (i.e., u′ (cd1)).
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When cd1 is evaluated at the Pareto optimal level that is implemented by the good equilibrium,

Equation (31) implies q0 = βR (or q0 = 1, using the normalization βR = 1). Thus, the payoff,

R, is discounted only according to the factor β and the preference shocks play no role in Equation

(31) because the banks offer depositors full insurance.

4.2.3 Bad equilibrium

As in DD, there can be another equilibrium in which bank runs become self-fulfilling prophecies.

In this equilibrium,the banks are subject to a run at t = 0 and they sell their holdings of long-term

assets to replace the withdrawals. Crucially, the long-term asset is sold at a fire-sale price, q0 < 1

(i.e., lower than the good equilibrium price). The fire-sale price arises because the banks are subject

to runs and fail at t = 0, leaving the depositors without insurance against liquidity risk. Hence, at

t = 0, the depositors increase their demand for liquidity and decrease their demand for the long-

term illiquid asset, putting downward pressure on the price, q0. This lower price, in turn, implies

that the banks are insolvent at t = 0, making runs a self-fulfilling outcome.

We consider the case of an unanticipated run, that is, in which banks’ allocations of endow-

ments at t = −1 to liquidity lb−1 and long-term assets kb
−1 as well as the banking contracts offered

to depositors are the same as in the good equilibrium.16 That is, we solve for the post-deposit equi-

librium, which is the equilibrium that includes only the prices and allocations for t = 0, 1, 2 that

maximize the households’ utility and clear the time-0 market, taking as given the choices made at

t = −1.

At t = 0, all of the agents withdraw their funds from the bank. The amount each agent can

withdraw depends on the equilibrium price, q0, and we denote this as

w (q0) = lb−1 + kb
−1q0. (32)

A very impatient depositor only enjoys utility at t = 0, so they immediately consume w (q0). Other

agents need to decide how to invest their withdrawals, that is, how much to invest in liquidity, ld0, and

long-term assets, kd
0 . Their problem is essentially identical to that of the buyers in Section 2—see

the problem in (1)—with the only difference being that the time-2 consumption is now discounted

16This allocation in the good equilibrium is lb−1 = γ + (1− γ) θ and kb−1 = (1− γ)(1− θ).
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by β. The optimal condition is thus an asset-pricing equation along the lines of Equation (5):

q0 = β
1

(1− θ)× 1 + θu′
(
cd1
) ×R. (33)

As a result, the equilibrium is similar to that of the baseline model of Section 2, with large

sales of the long-term asset and a fire-sale price, q0, as formalized by the next proposition. The

difference is that the selling pressure here originates from a bank run rather than an exogenous

shock to redemptions.

Proposition 4.4. (Bank runs and fire sales) There exists a post-deposit equilibrium in which all of

the depositors run and withdraw w (q0) < 1 at t = 0. In this equilibrium, the long-term asset is

traded at a fire-sale price, q0 < 1.

5 Conclusion

This paper provides a novel theory of fire sales in which a combination of liquidity risk and resale

frictions generates a fire-sale price when (and only when) the selling pressure is high. The approach

is quite general and can be combined with several sources of selling pressure, such as exogenous

withdrawals from MMMFs or mutual funds, the tightening of collateral constraints, and panic-

based runs.

The main application of the model is to the fire sales that took place at the peak of the COVID-

19 crisis in March 2020. These involved high-quality assets such as Treasury securities and highly

rated corporate bonds sold by mutual funds and MMMFs. The SEC responded to these events by

proposing tight liquidity requirements. As viewed through the lens of our model, however, these

policy interventions would reduce welfare, as we find the equilibrium to be constrained efficient

under some weak conditions that we argue apply in practice. These results stand in contrast to the

main fire-sale theories in the literature, in which the equilibrium is typically inefficient.

Our paper opens up several directions for future research. On the theoretical side, an open

question is related to the welfare properties and possible regulatory interventions that might be

required when our liquidity risk pricing is combined with alternative sources of forced sales that

we have only briefly analyzed, such as the tightening of collateral constraints. On the empirical

side, future research can analyze the extent to which our pricing mechanism contributes to fire

sales.
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APPENDIX

A Application: Liquidity risk pricing and mutual funds

In this section, we present another example that showcases fire sales. The model is similar to that of

Section 2, with the main difference being that the sellers are now a coalition of a unit mass of small

investors, each with an endowment of ks
−1, holding one share of the coalition. We demonstrate that

this coalition can in fact be interpreted as a mutual fund. A fraction, γ ∈ {0, γ̄}, of the coalition

needs to consume at time 0, while the remainder will consume at time 2. We assume that the

buyers’ endowment of liquidity, lb−1, is sufficiently large so that there are no fire sales in the state

in which no member of the coalition needs to consume (i.e., when γ = 0). We also assume that

γ̄ks
−1R + 1 > lb−1.

Assuming log utility for consumption, the utility of the coalition at time 0 is given by

U s = γ log(cs0) + (1− γ) log(cs2).

On the other hand, the buyers are the same as in the baseline model.

At time 0, given the realization of γ, the seller coalition solves

max
ls0,k

s
0,c

s
0,c

s
2

γ log (cs0) + (1− γ) log(cs2)

subject to

ls0 + q0k
s
0 ≤ ks

−1q0

γcs0 = ls0,

(1− γ)cs2 = Rks
0.

And it follows that

γcs0 = γq0k
s
−1,

that is, the time-0 outflow of funds is only a fraction, γ, of the total asset value of the coalition.

Hence, we can think of the coalition as a mutual fund, as shares are repaid at their net asset value

(NAV).
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The market clearing condition for liquidity is now

γcs0 + lb0 = lb−1.

When γ = 0, the market clears at the price q0 = R. When γ = γ̄, the market clearing condition

becomes

γ̄q0k
s
−1 +

q0(1− θ)

R− q0θ
= lb−1.

Recall that we have assumed γ̄ks
−1R + 1 > lb−1 and, thus, the market cannot clear at q0 = R.

Because the second term on the left-hand side of the market clearing condition is increasing in q0,

we conclude that q0 has to be less than R.

B Proofs

Proof of Proposition 2.1 Let γ = 0 and q0 = R. The sellers are indifferent between the two

assets. For the buyers’ problem, we formally write the Lagrangian function as

Lb
0 = (1− θ)(lb0 +Rkb

0) + θ

[
u(cb1) + lb0 − cb1 +Rkb

0

]
− λ0(l

b
0 +Rkb

0 − lb−1 −Rkb
−1)− η0(c

b
1 − lb0).

The necessary conditions for optimal cb1, l
b
0, k

b
0 imply λ0 = 1, η0 = 0, and cb1 = 1. Any lb0 ∈

[1, lb−1 +Rkb
−1] will be optimal. Hence, lb0 = lb−1 and kb

0 = kb
−1 for the buyers, and ls0 = 0, ks

0 = ks
−1

for the sellers is an equilibrium allocation, given q0 = R. Because this allocation implies that no

trading takes place at t = 0, market clearing holds. □

Proof of Proposition 2.2 When γ = γ̄ and q0 < R, the sellers will invest all of their wealth in

the long-term asset after meeting the withdrawal needs, that is,

ks
0 =

q0k
s
−1 − γ̄ds−1

q0
.

For the buyers’ problem, the Lagrangian function becomes

Lb
0 = (1− θ)(lb0 +Rkb

0) + θ

[
u(cb1) + lb0 − cb1 +Rkb

0

]
− λ0(l

b
0 + q0k

b
0 − lb−1 − q0k

b
−1)− η0(c

b
1 − lb0).
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The necessary conditions for optimal cb1, l
b
0, k

b
0 are

θ

(
1

cb1
− 1

)
= η0,

1 + η0 = λ0,

R = q0λ0.

When q0 < R, those conditions imply

cb1 = lb0 =
1

R
θq0

− 1
θ
+ 1

< 1.

The equilibrium price q0 is then derived from the market clearing condition (9), or

1
R
θq0

− 1
θ
+ 1

+ γ̄ds−1 = lb−1.

Using our assumption that 1 + γ̄ds−1 > lb−1, the market cannot clear at q0 = R; hence, such a

condition implies that q0 < R. □

Proof of Proposition 2.3 First, consider a buyer is hit by a preference shock at t = 1. This buyer

chooses holdings of the short- and long-term liquid assets lb1 and hb
1 to maximize u

(
cb1
)
+Rh1+ lb1,

subject to the budget constraint (12) and the non-negativity constraint hb
1 ≥ 0 and lb1 ≥ 0. Denoting

ηb1 to be the Lagrange multiplier of the constraint hb
1 ≥ 0, the first-order condition with respect to

hb
1 implies

u′ (cb1) p1 = R + ηb1.

In the state with no fire sales, we have u′ (cb1) = 1, and given p1 = R, we obtain that hb
1 = 0 is

optimal and the non-negativity constraint hb
1 ≥ 0 is not binding. In the state with fire sales, we have

u′ (cb1) > 1, which implies ηb1 > 0.

Next, consider a buyer not hit by a preference shock. This agent maximizes Rhb
1 + lb1 subject

to the budget constraint (12) and the non-negativity constraint hb
1 ≥ 0 and lb1 ≥ 0. The first-order

condition is p1 = R, which is satisfied in all states for the holdings hb
1 = 0. For the sellers, the

analysis is the same as for the buyers that were not hit by a preference shock.
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Next, we turn to the buyers’ problem at t = 0:

max
lb0,k

b
0,h

b
0

(1− θ)

[
Rkb

0 + lb1 +R
lb0 + p1h

b
0 − lb1

p1

]
+ θ

[
log

(
lb0 + p1h

b
0 − p1h

b
1 − lb1

)
+Rkb

0 +Rhb
1

]
subject to the budget constraint (11). The first-order conditions evaluated at p1 = R imply

(1− θ) + θu′ (cb1) = p0
q0
,

and together with (5), the first-order condition holds given the equilibrium price p0 = R. Finally,

because all agents’ holdings of h are zero at all times, the equilibrium is unchanged and market

clearing holds because the asset is in zero net supply. □

Proof of Proposition 3.1 The result follows from plugging ∂q0/∂lj−1 = 0 and ∂q0/∂kj−1 = 0 for

j ∈ {b, s} for j ∈ {b, s} into the regulator’s first-order conditions (23) and (24), and comparing

them with (20) and (17). □

Proof of Proposition 3.2 Comparing the first-order conditions of the unregulated equilibrium,

(17) and (20), with that of the regulator, (23) and (24), we observe that the difference is driven by

the term

E−1

{(
∂q0
∂kb

−1

− ∂q0
∂lb−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
for the buyers and

E−1

{(
∂q0
∂ks

−1

− ∂q0
∂ls−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
for the sellers. □

Proof of Proposition 3.3 The result follows from the standard full spanning argument given by

market completeness. Alternatively, the result follows as a corollary of item (ii) of Proposition 3.4.

□

Proof of Proposition 3.4 Item (i): With linear utility in time-2 consumption, the marginal utilities

of wealth at t = 0 are λs
0 = λb

0 = R/q0. Hence, (23) and (24) collapse to (17) and (20), using ξ = 1.

Item (ii): We first note that in any state in which there are no fire sales, q0 = R and the time-

1 liquidity constraint of the buyers in (3) is slack. These two features imply that ∂q0/∂lb−1 = 0,
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∂q0/∂kb−1 = 0, ∂q0/∂ls−1 = 0, and ∂q0/∂ks−1 = 0 because of an arbitrage argument. Agents can obtain a

gross return of one between t = 0 and t = 2 by investing in liquidity at t = 0 and carrying it until

t = 2 and, thus, the same gross return must be achieved by investing in the long-term asset, thereby

requiring that q0 = R. This argument holds as long as the buyers are fully insured against liquidity

shocks, so that any marginal variations in the agents’ portfolio holdings at t = −1 do not affect q0.

With this result, it is easy to see that the first-order conditions of the regulator simplify dra-

matically. Let us focus on Equation (23), although the discussion also applies to Equation (24). In

Equation (23), the term
(

∂q0
∂kb−1

− ∂q0
∂lb−1

) (
ξλb

0 − λs
0

) (
ks
−1 − ks

0

)
is zero in all states in which there are

no fire sales because
(

∂q0
∂kb−1

− ∂q0
∂lb−1

)
= 0. Thus, the term

(
∂q0
∂kb−1

− ∂q0
∂lb−1

) (
ξλb

0 − λs
0

) (
ks
−1 − ks

0

)
is,

in general, not zero only in the state in which there is a fire sale. By assumption of the proposition,

fire sales occur only in one state and, thus, one can pick the Pareto weight ξ such that ξλb
0−λs

0 = 0

in that state and the optimality condition of the regulator coincides with that of the private agents,

(17).

Item (iii): Recall that q0 is determined by the market clearing condition for liquidity

lb0
(
W b

0 ; q0
)
+ ls0 (W

s
0 ; q0) + γds0 = lb−1 + ls−1, (34)

where lj0
(
W j

0 ; q0
)

denotes the liquidity demand of the agent, and j ∈ {b, s} is a function of their

wealth, W j
0 , and the price, q0. Because the wealth effects on ls0 and lb0 are assumed to be zero, the

choices made at time t = −1 affect q0 only through changes in lb−1 + ls−1 on the right-hand side

of (34). This implies that ∂q0/∂kb−1 = 0 and ∂q0/∂ks−1 = 0, so that the first-order conditions of the

regulator (23) and (24) become

E−1

{
ξλb

0 (q0 − 1)−
(

∂q0
∂lb−1

)[(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)]}
= 0 (35)

and

E−1

{
λs
0 (q0 − 1)−

(
∂q0
∂ls−1

)[(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)]}
= 0. (36)

In addition, (34) implies that a change in the liquidity holdings at time t = −1 produces the same

effect on q0, independently of whether such a change is due to the buyers or sellers’ holdings of

liquidity; that is, ∂q0/∂lb−1 = ∂q0/∂ls−1. As a result, the second term in the expectation of (35) is the
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same as the second term in the expectation of (36). We rewrite this term but omit the superscript:

E−1

{
−
(

∂q0
∂l−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
. (37)

To complete the proof, we need to show that (37) is zero for some ξ > 0. First, as discussed in the

proof of item (ii), note that ∂q0/∂ls−1 = 0 in states in which there are no fire sales. Thus, we focus

on fire-sale states. In such states, using the assumption of the proposition, we have ∂q0/∂ls−1 > 0

because the liquidity demand is downward sloping in its price (i.e., downward sloping in 1/q0) and

ks
0 − ks

−1 < 0 because the sellers sell some of their asset holdings. Then, because the marginal

utilities of the buyers and sellers’ wealth, λb
0 and λs

0, are always strictly positive, we can consider

the case in which ξ → 0 and ξ is sufficiently large, to obtain

E−1

{
−
(

∂q0
∂l−1

)
(−λs

0)
(
ks
0 − ks

−1

)}
< 0

and

E−1

{
−
(

∂q0
∂l−1

)(
ξλb

0 − λs
0

) (
ks
0 − ks

−1

)}
> 0,

respectively. Hence, by continuity, there exists ξ so that (37) is zero.□

Proof of Proposition 4.1 The result can be established as in the proof of Proposition 2.1 and

by noting that, in equilibrium, the collateral constraint in Equation (25) is not binding, using the

assumptions (26) and RH > 1. □

Proof of Proposition 4.2 We conjecture (and later verify) that the buyers’ liquidity constraint,

(3), is binding. Thus, the buyers’ first-order condition (5) and the time-1 log utility assumption

imply

lb0 =
q0 (1− θ)

R− q0θ
. (38)

Next, consider the market clearing condition for liquidity lb0 + ls0 = 1. (Recall that the buyers’

liquidity holdings lb−1 are normalized to one and those ls−1 of the sellers are normalized to zero.)

Using (29) and (38), the market clearing condition becomes

q0 (1− θ)

R− q0θ
+

dl−1 (1− q0)

ζ
− 1 = 0.
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We then evaluate this condition at two values of q0: q0 = RL and q0 = 1 − ζ . The former is the

upper bound on the equilibrium price. Absent fire sales, the price cannot be higher than its expected

payoff, otherwise, the buyers would obtain a higher return by investing all their wealth in liquidity.

The latter is the price at which the sellers’ net worth is zero, that is, q0ks
−1−ds−1 = 0, and is derived

using the endowment of the long-term asset ks
−1 in (26). We have

[
q0 (1− θ)

RL − q0θ
+

dl−1 (1− q0)

ζ
− 1

]
q0=RL

=
dl−1

(
1−RL

)
ζ

> 0

and [
q0 (1− θ)

RL − q0θ
+

dl−1 (1− q0)

ζ
− 1

]
q0=1−ζ

= dl−1 −
RL − (1− ζ)

RL − (1− ζ) θ
< 0,

where the first inequality uses the assumption RL < 1 and the latter uses the restriction on ζ in

(28). Thus, because of the continuity, there exists one price q0 < RL such that the liquidity market

clears at t = 0 and the sellers have a strictly positive net worth. Finally, the conjecture that the

buyers’ liquidity constraint is binding is verified because q0 < RL < 1 implies ls0 > 0 and, by

market clearing, lb0 < 1, so that cb1 < 1. □

Proof of Proposition 4.3 We prove the result in three steps.

Step 1. We begin by deriving the Pareto optimal allocation by solving the problem of a planner

that has full information of individuals’ realized types at both t = 0 and t = 1. At time t = −1, the

planner stores lp−1 and invests kp
−1 in a long-term asset. Each very impatient agent consumes cp0 at

time t = 0, each impatient agent consumes cp1 at time t = 1, and each patient agent consumes cp2 at

time t = 2. To maximize social welfare, the planner solves the following optimization problem:

max
lp−1,c

p
0,c

p
1,c

p
2

γu(cp0) + (1− γ)θu(cp1) + (1− γ)(1− θ)βcp2

subject to the resource constraints at t = −1, t = 1, and t = 2:

lp−1 + kp
−1 = 1,

(1− γ)θcp1 ≤ lp−1 − γcp0,

(1− γ) (1− θ)cp2 = kp
−1R + lp−1 − γcp0 − (1− γ)θcp1.

The solution to the above program satisfies u′(cp0) = u′(cp1) = 1. Under log utility, the Pareto
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optimal allocation is

lp−1 = γ + (1− γ)θ, kp
−1 = (1− γ)(1− θ), cp0 = 1, cp1 = 1, cp2 = R.

Step 2. We show that the Pareto optimal allocation solves the banks’ problem, given the equilib-

rium price q0 = 1 and that the time-0 market clears. Consider the Pareto optimal allocation derived

previously and the banks’ problem in (30). First, given kp = (1− γ)(1− θ), each patient depositor

can consume the Pareto optimal amount cp2 = R. Second, it is feasible for each impatient depositor

to consume at the Pareto optimal level cp1. Third, the time-0 optimality condition (31) evaluated to

q0 = 1 implies cd1 = cp1 = 1, using the normalization βR = 1; hence, the Pareto optimal allocations

are implemented. Fourth, given the choices at t = 0, 1, 2, the first-order condition at t = −1 is

just 1/q0 = 1, which holds, given the equilibrium price q0 = 1. Finally, note that these choices

imply that banks do not engage in any trade at t = 0 and because depositors do not engage in any

trade either, the time-0 market clears. Regarding depositors’ trades, very impatient depositors do

not trade because they consume all of their withdrawals, since their utility depends only on time-0

consumption and they have no market access. Non-very-impatient depositors do not trade either

because they do not withdraw at t = 0 and, thus, have no resources to trade.

Step 3. We check that depositors truthfully report their own type. Very impatient depositors

will never misreport, since they only consume at time 0. A depositor not affected by the time-0

preference shock, by misreporting, collects cd0 = 1 from the bank and is able to adjust their portfolio

by entering the centralized market. Given q0 = 1, let l′0 be the amount of liquidity they hold, which

solves

max
l′0

θ log(l′0) + β

[
(1− θ)l′0 + (1− l′0)R

]
s.t. l′0 ≤ 1.

That is, if they are impatient (which happens with probability θ), they consume all of their liquidity

l′0 at t = 1 and the return on their long-term asset (1 − l′0)R at t = 2; and if they are patient, they

consume l′0 plus (1− l′0)R. The solution is

l′0 =
θ

1− β(1− θ)
,
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which is strictly less than 1 because β < 1. The expected utility from misreporting is

θ log
θ

1− β(1− θ)
+β

[
(1− θ)

θ

1− β(1− θ)
+

(
1− θ

1− β(1− θ)

)
R

]
< θ log 1+ (1− θ) βR,

where the inequality uses l′0 < 1 and (1− θ)l′0 + (1− l′0)R < (1− θ)× 0 + (1− 0)×R.

Finally, note that no misreporting will occur at t = 1 either. An impatient depositor will never

misreport because, if they do, they will have no resources at t = 1 and an infinite marginal utility

of consumption at that point. A patient agent will not misreport either. Misreporting implies that

they will receive one unit at t = 1 and they can store it to consume at t = 2, whereas reporting

truthfully implies that they consume R > 1.□

Proof of Proposition 4.4 We start with a guess that q0 < 1 and verify this later. Let l′0 be the

amount of liquidity held by a depositor not affected by the time-0 preference shock, which solves

max
l′0

θ log(l′0) + β

[
(1− θ)l′0 + (1− l′0)

R

q0

]
s.t. l′0 ≤ w(q0).

The constraint l′0 ≤ w(q0) cannot be binding; otherwise, the long-term asset market cannot clear.

Hence l′0 is derived from the following first-order condition:

l′0 =
θ

1
q0
− β(1− θ)

.

The market clearing condition for the liquid asset market is denoted as

γw(q0) + (1− γ)l′0 = l−1.

Suppose q0 ≥ 1, the left-hand side of the above condition is greater than γ+1−γ, which is greater

than l−1. Hence, the market cannot clear, which is a contradiction. As a result, the equilibrium

price q0 has to be strictly less than 1. □
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C Baseline model with general utility and general shocks

In this section, we extend the baseline model in Section 2 along two dimensions: first, the buyers

and the sellers have utilities in general form; second, the aggregate shock γ follows a CDF F (γ).

The sellers choose their non-negative holdings of liquid and long-term assets at t = 0, ls0 ≥ 0 and

ks
0 ≥ 0, as well as cs0, c

s
1, c

s
2, to maximize U s(cs0, c

s
1, c

s
2), subject to the time-0, time-1, and time-2

budget constraints:

cs0 + ls0 + q0k
s
0 ≤ q0k

s
−1 − γds−1,

cs1 ≤ ls0,

c2 ≤ ls0 − cs1 +Rks
0 − (1− γ)ds−1,

all of which will be binding. The necessary conditions for optimality are

U s
c0
(q0k

s
−1 − γds−1 − ls0 − q0k

s
0, l

s
0, Rks

0 − (1− γ)ds−1) = λ0,

U s
c1
(q0k

s
−1 − γds−1 − ls0 − q0k

s
0, l

s
0, Rks

0 − (1− γ)ds−1) = λ0,

RU s
c2
(q0k

s
−1 − γds−1 − ls0 − q0k

s
0, l

s
0, Rks

0 − (1− γ)ds−1) = λ0q0.

Let the solution be cs0(γ, q0), l
s
0(γ, q0), and ks

0(γ, q0). We assume U s satisfies conditions such that

ls0(γ, q0) is weakly decreasing in γ.17

The buyers have utility U b(c0, c1, c2, ϵ), where ϵ denotes the preference shock; that is, when

ϵ = 0, the buyers do not value c1. As in Section 2, ϵ = 0 with probability 1 − θ and ϵ = 1 with

probability θ. The time-0 budget constraint becomes

cb0 + lb0 + q0k
b
0 ≤ lb−1 + q0k

b
−1.

17To specify, one can solve ∂ls0
∂γ and ∂ks

0

∂γ from the following three conditions:

−U00

(
ds−1 +

∂ls0
∂γ

)
+ q0

∂ks0
∂γ

+ U01
∂ls0
∂γ

+ U02

(
R
∂ks0
∂γ

+ ds−1

)
=

∂λ

∂γ
,

−U10

(
ds−1 +

∂ls0
∂γ

)
+ q0

∂ks0
∂γ

+ U11
∂ls0
∂γ

+ U12

(
R
∂ks0
∂γ

+ ds−1

)
=

∂λ

∂γ
,

−U20

(
ds−1 +

∂ls0
∂γ

)
+ q0

∂ks0
∂γ

+ U21
∂ls0
∂γ

+ U22

(
R
∂ks0
∂γ

+ ds−1

)
=

∂λ

∂γ
,

where Uij denotes for Ucicj . We assume ∂ls0
∂γ as the solution to be non-positive for all γ.
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When q0 = R, as in the proof of Proposition 2.1, the necessary conditions for optimal cb0, c
b
1, l

b
0, k

b
0

in the buyers’ problem are

(1− θ)U b
c0
(cb0, l

b
0 − cb1 +Rkb

0|ϵ = 0) + θU b
c0
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1) = λ0

θ

[
U b
c1
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1)− U b
c2
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1)

]
= η0,

(1− θ)U b
c2
(cb0, l

b
0 − cb1 +Rkb

0|ϵ = 0) + θU b
c2
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1) + η0 = λ0,

R

[
(1− θ)U b

c2
(cb0, l

b
0 − cb1 +Rkb

0|ϵ = 0) + θU b
c2
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1)

]
= Rλ0.

The sellers choose cs0(γ,R), ls0(γ,R), and ks
0(γ,R), and the buyers choose lb0 = lb−1−ls0(γR)−γds−1

and kb
0 = kb

−1 + ks
−1 − ks

0(γ,R) according to market clearing conditions and cb0 and cb1, satisfying

the intertemporal optimal conditions

U b
c1
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1) = U b
c2
(cb0, c

b
1, l

b
0 − cb1 +Rkb

0|ϵ = 1),

(1− θ)U b
c0
(ϵ = 0) + θU b

c0
(ϵ = 1) = (1− θ)U b

c1
(ϵ = 0) + θU b

c1
(ϵ = 1).

Note that lb0 = lb−1 − ls0(γ,R) − γds−1 is decreasing in γ. Similar to the sellers, we assume that U b

satisfies conditions such that cb1(γ) increases in γ. Let γ̄ be such that cb0(γ̄) and cb1(γ̄) satisfy the

above two conditions and cb1(γ̄) = lb0(γ̄); then the equilibrium with q0 = R exists when γ ≤ γ̄.

On the other hand, for each γ > γ̄, we show that an equilibrium with q0 < R exists. When this

is true, η0 > 0, implying cb1(γ, q0) = lb0(γ, q0). The price q0 is then derived from the market clearing

condition

ls0(γ, q0) + γds−1 + lb0(γ, q0) = lb−1,

as in the proof of Proposition 2.1. We assume U s and U b are such that ls0(γ, q0) is weakly increasing

in both γ and q0, and lb0(γ, q0) is increasing in both γ and q0, so that

ls0(γ,R) + γds−1 + lb0(γ,R) > lb−1 for all γ,

and that

ls0(γ, 0) + γds−1 + lb0(γ, 0) < lb−1 for all γ.

This guarantees that a unique solution, q0 ∈ (0, R), exists by continuity. In addition, the market

51



clearing condition implies that

q′0(γ) = −
∂ls0
∂γ

+
∂lb0
∂γ

+ ds−1

∂ls0
∂q0

+
∂lb0
∂q0

< 0.

That is, the higher the reselling pressure, the lower the fire-sale price becomes.

D Time -1 investments in the baseline model with two with-

drawal shocks

In this appendix, we characterize in closed form the choice of the agents’ investments in liquidity

and long-term assets under the functional forms of the utility functions and the CDF F (·) that we

used in the baseline model of Section 2. In particular, we assume that the shock γ can take two

values, γ ∈ {0, γ̄}, with probability 1− π and π, respectively.

In the model of Section 2, the time-0 marginal utilities of the buyers and sellers’ wealth is the

same and given by λb
0 = λs

0 = R/q0. Thus, when γ = 0 and q0 = R, we have λb
0 = λs

0 = 1,

and when γ = γ̄, we have λb
0 = λs

0 = R/q (γ̄), where q (γ̄) denotes the time-0 price in the state

in which γ = γ̄. Thus, the first-order condition (17) of the buyers—or equivalently the first-order

condition (20) of the sellers—can be rewritten as

(1− π) (R− 1) + π
R

q (γ̄)
(q (γ̄)− 1) = 0

which implies

q (γ̄) =
πR

R− (1− π)
.

Given this price, both the sellers and the buyers are indifferent regarding their holdings of liquidity

and long-term assets in their portfolios at time t = −1. We can then normalize ls−1 = 0 as we did

in Section 2, and the buyer’s liquidity choice lb−1 is determined from the market clearing condition

in the fire-sale state (i.e., when γ = γ̄):

lb−1 =
1

R
θq(γ̄)

− 1
θ
+ 1

+ γ̄ds−1

=
θπ

R− 1 + θπ
+ γ̄ds−1.
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Finally, the buyers and sellers’ investments in the long-term asset are determined by their budget

constraints at t = −1, that is, (13) and (14), so that kb
−1 = eb− θπ

R−1+θπ
− γ̄ds−1 and ks

−1 = es+ds−1.

E Collateral constraint and limited commitment

In this appendix, we derive the collateral constraint in Equation (25) by appealing to a limited

commitment friction and following Lorenzoni (2008). Assume that a fraction α of debt ds−1 is due

at the end of time t = 0. If a seller fails to pay, it can make a take-it-or-leave-it offer to the debt

holders. If the debt holder rejects the offer, liquidation takes place, which destroys a fraction ζ

of the capital holdings. The rest of the capital (which is valued according to the price q0) and the

liquidity go to the debt holders. The resulting constraint is

ds−1 ≤ (1− ζ) q0k
s
0 + ls0.

Using the time-0 seller’s budget constraint q0ks
0 + ls0 + αds−1 ≤ q0k

s
−1 + ls−1, taking the limit as

α → 0 and rearranging, we recover the constraints in Equation (25).

Regarding the collateral constraint at time t = −1 in Equation (27), one can proceed along the

lines of the time-0 constraint. That is, assume that a fraction α−1 of debt ds−1 is due at the end of

t = −1 (i.e., after the t = −1 investments have been made), that the seller can make a take-it-or-

leave-it offer to all of the debt holders, and that if the debt holders reject the offer, liquidation takes

place, which destroys a fraction ζ of the capital holdings. One can then take α−1 to be arbitrarily

close to zero.

F Limited market access and creation of new banks at t = 0

Section 4.2 derived a run equilibrium with fire sales driven by our novel liquidity risk pricing. Two

assumptions are imposed to simplify the exposition, but they are arguably somewhat restrictive.

First, the time-0 preference shock is perfectly correlated with the market access shock, and agents

cannot trade at t = 0 if and only if they are very impatient. Second, banks can only be established

at t = −1 and, thus, new banks cannot be established at t = 0 even though agents can gather in a

centralized market at that time.

We now consider an extension with less-restrictive assumptions.
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(i) The time-0 preference shock is uncorrelated with the market access shock. Specifically, only

a fraction p < 1 of depositors has access to the centralized market. The remaining 1− p can

either store the amount withdrawn from banks in the form of the liquid asset or consume it.

(ii) New banks can be created at t = 0.

With respect to (ii), we note that the ability to create banks at t = 0 captures the idea that some

depositors may be able to transfer their resources to other parts of the financial sector during a run,

thereby obtaining full or near-full insurance against their residual liquidity risk. This possibility

would alter depositors’ pricing kernel and limit the fire-sale mechanism that we analyzed.18

Despite the weaker assumptions, the results of the good and bad equilibria are qualitatively

unchanged, as formalized by the next proposition.

Proposition F.1. Assume (i) and (ii) hold. Two equilibria exist: a good equilibrium that implements

the first best and a post-deposit run equilibrium in which all depositors withdraw w (q) < 1 at

t = 0. In the run equilibrium, the long-term asset is traded at a fire-sale price q0 < 1.

Proof. For the good equilibrium, the argument about q0 = 1 still follows. We only need to

check the incentive compatibility of the depositors not hit by the preference shock at time 0. If the

depositor has access to the centralized market, the IC is the same as in the good equilibrium in the

main part of the paper. If the depositor has no market access, the one unit of liquidity withdrawn

delivers an expected utility given by

θ log 1 + (1− θ)β,

which is less than the expected utility the depositor receives by not withdrawing, which is θ log 1+

(1− θ)βR.

For the bank run equilibrium, in the case of autarchy, agents that are not affected by the prefer-

ence shock at time 0 withdraw w(q0) from the old bank and receive an expected utility of

θ logw(q0) + βw(q0).

These agents that successfully access the centralized market can create a new bank that provides

18If all of the depositors can join new banks at t = 0, the bad equilibrium does not exist.
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insurance against liquidity risk. The new bank collects p(1− γ)w(q0) from these agents and solves

max
l̂0,k̂0,ĉ1,ĉ2

p(1− γ)θ log (ĉ1) + p(1− γ)(1− θ)βĉ2

subject to

l̂0 + q0k̂0 ≤ p(1− γ)w(q0)

p(1− γ)θĉ1 = l̂0,

p (1− γ) (1− θ)ĉ2 = R k̂0.

The solution for the liquidity holdings is

l̂0 = p(1− γ)θq0.

Given this result, the market clearing condition for this liquidity is now denoted as

γw(q0) + (1− p)(1− γ)w(q0) + p(1− γ)θq0 = γ + (1− γ)θ. (39)

The first term in (39) is the aggregate demand from the very impatient buyer types. The second

term is the demand from the remaining agents, which are in autarchy. The third term is the demand

from the newly established bank. Similar to the case with full participation, it can be shown that

q0 < 1 in this equilibrium. If q0 ≥ 1, the left-hand side of (39) is greater than the right-hand side

because

γw(q0) + (1− p)(1− γ)w(q0) + p(1− γ)θq0

≥γ + (1− p)(1− γ) + p(1− γ)

>γ + (1− γ)θ,

and the market cannot clear. Thus, q0 < 1. □
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