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Abstract 

We incorporate a participation decision in a standard New Keynesian model with 
matching frictions and show that treating the labor force as constant leads to incorrect 
evaluation of alternative policies. We also show that the presence of a participation 
margin mitigates the Shimer critique. 
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monetary policy 

Résumé 

Les auteurs incorporent la décision de participer ou non au marché du travail à un modèle 
néokeynésien standard avec frictions d’appariement. Ils montrent que le fait de considérer 
comme constant le taux de participation à la population active entraîne une évaluation 
incorrecte des différentes politiques envisagées et que la présence d’une marge de 
participation atténue les problèmes soulevés par Shimer. 

Classification JEL : E24, E32, E52 
Classification de la Banque : Marchés du travail; Cycles et fluctuations économiques; 
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1. Introduction

Recent empirical evidence has shown that movements in the labor force explain
between one-fourth (Barnichon and Figura (2010)) and one-third (Elsby et al. (2013))
of the cyclical variation in the unemployment rate. This fact is in stark contrast with
most recent dynamic stochastic general-equilibrium models with nominal rigidities and
matching frictions. This paper builds an otherwise-standard New Keynesian model
with matching frictions featuring a labor market participation decision, and compares
it to an alternative model assuming an exogenously constant labor force.

We contribute to the literature by showing that even though the labor force is the
least volatile among labor market variables, neglecting it might be very misleading.
We first find that an exogenous participation model understates the volatility of labor
market tightness, as compared to a model with an endogenous labor force. Hence,
including a participation margin is helpful to address the Shimer critique. Then, we
show that treating the labor force as constant, and thus invariant to policy, leads to
incorrect evaluation of a change in the monetary policy rule and, more broadly, of a
change in any policy shaping the response of aggregate demand to shocks. For a given
participation rate, expanding aggregate demand affects labor market tightness and the
unemployment rate by boosting vacancy posting and labor demand. However, it also
affects labor market variables through the participation decision via two channels. On
the one hand, a change in tightness makes job search more or less attractive, inducing
the household to vary the size of the labor force. As a result, the policy change
transmits to labor market variables by acting also on labor supply. On the other hand,
by making search more or less attractive, policy affects workers’ outside option, which
feeds back on vacancy posting and thus on the initial policy effect on labor demand. As
a consequence, policies cannot be evaluated abstracting from the endogenous response
of participation.

We model entry to the labor market as the outcome of an optimal time-allocation
problem among market work, housework and search activity, and use micro evidence
to calibrate the household’s opportunity cost of search in terms of forgone home pro-
duction.1

In both the exogenous and the endogenous participation models, the marginal rate
of substitution, and thus workers’ outside option, is procyclical conditional on market
productivity shocks. As pointed out by Chodorow-Reich and Karabarbounis (2013),
this fact implies that a high relative average value of non-work to work activity does
not necessarily address the Shimer critique, contrary to the proposal by Hagedorn
and Manovskii (2008). However, in the endogenous participation model the household
chooses participation so as to tie the marginal rate of substitution between market and
home goods to labor market tightness, which indeed captures the opportunity cost of

1Changes in time devoted to home-related activity upon entering the labor force roughly match
time spent in job search, as we document in Table 1.
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home producing. At equilibrium, the marginal rate of substitution does not increase
as much as under exogenous participation, because ceteris paribus the household is
relatively more willing to substitute home production with market activity. As a result,
firms find it cheaper to post vacancies and the unemployment rate is about five times
more volatile than under constant participation.

Before conducting our policy analysis, we make sure that the model delivers correct
predictions about the labor force once the volatility of other labor market variables is in
line with the data. We allow for a combination of technology and preference shocks to
ensure that both the endogenous and the exogenous models match key second moments
of labor market variables.2 Then, we validate our mechanism by showing that our model
also accounts for observed fluctuations of the participation rate in the U.S. economy,
a moment that we have not targeted.

Finally, we show that even if both models successfully match key second moments of
labor market variables, the endogenous and the exogenous participation models deliver
remarkably different implications for the effects of monetary policy on macroeconomic
variables. For instance, the exogenous participation model overpredicts the surge in
the unemployment rate volatility due to inflation stabilization, since it neglects the fact
that most of the policy change is absorbed by the participation margin. Moreover, we
also show that the welfare ranking of alternative monetary policy rules varies across
models. Under our calibration, we find that a monetary policy rule assigning some
weight to the unemployment rate is welfare improving compared to a rule that neither
fully stabilizes inflation nor targets the unemployment rate. The opposite holds if
participation is assumed to be constant.

Two papers in particular are related to ours. Gaĺı (2010) considers a model of ad-
justment costs to employment and an endogenous labor force. Differently from us, he
does not tackle the role of the participation margin for monetary policy and he assumes
a large opportunity cost of search, as compared to the micro evidence, downplaying the
importance of labor force fluctuations. Christiano et al. (2012) consider a New Keyne-
sian model with endogenous search intensity. However, they abstract from matching
frictions neglecting the mechanism we highlight here, which is entirely driven by the
general-equilibrium interaction between participation decisions and vacancy posting.

The paper is organized as follows. In section 2 we describe our model economy, sec-
tion 3 explains the calibration strategy, section 4 investigates the incentives driving the
participation decision, section 5 performs the policy analysis and section 6 concludes.

2The contributions by Diamond (1982) and Mortensen and Pissarides (1999) spurred a rich lit-
erature investigating whether matching friction models are successful in replicating business cycle
evidence. Various solutions to the Shimer critique have been proposed, such as staggered wage bar-
gaining (Gertler and Trigari (2009)), fixed matching costs (Pissarides (2009)), and demand shocks
(Sveen and Weinke (2008); Balleer (2012)).
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2. The model

The economy is populated by a representative large household whose utility depends
on market- and home-produced goods, firms producing a homogeneous intermediate
good under perfect competition, and final retailers selling a differentiated market good
under monopolistic competition. There are search frictions à la Diamond (1982) and
Mortensen and Pissarides (1999) in the labor market, and the household’s members
can be employed, unemployed or non-participant. The employed engage in market
production; the unemployed home-produce in the residual time unoccupied by job
search; the non-participant is devoted solely to housework. In the intermediate-good
sector, firms need to be matched with a household member in order to produce and,
when searching, they are subject to a vacancy posting cost. Jobs can be exogenously
discontinued at any time. In the final-goods sector prices are sticky, as in Calvo (1983).3

In this section we describe the primitives of the model and we refer to the appendix
for most of the derivations.

2.1. Households

The representative household consists of a mass 1 continuum of family members.
The mass of employed, unemployed and non-participant members is denoted by Et, Ut
and Lt, respectively. The pool of labor market participants is given by Nt = 1 − Lt,
which can be interpreted as the participation rate.

In a generic period, say t − 1, after all decisions have been taken and executed, a
fraction ρ of the employed are separated from their job. The unemployed, the non-
participants and separated workers Ut−1 + Lt−1 + ρEt−1 = 1 − (1 − ρ)Et−1 form the
non-employment pool, out of which some members become searchers in the following
period, St, and the remaining ones enter non-participation, Lt. Hence, we can write

St + Lt = 1− (1− ρ)Et−1; St = Nt − (1− ρ)Et−1, (1)

where St ≥ 0, and Nt ≥ (1−ρ)Et−1. Since we do not model endogenous separation, the
employed flowing out of the labor force cannot be more than the workers who separated
in the previous period, while flows from unemployment to out of the labor force can be
as large as Ut−1.4 Denote the job-finding rate by ft and assume instantaneous hiring.5

3We use the two-sector set-up to keep matching frictions separated from price rigidity, as in Walsh
(2005) and Trigari (2006).

4We assume that if the household wishes to reduce participation, there are always enough unem-
ployed workers to choose from. This is the case if steady-state unemployment is large enough relative
to shocks. We check ex post that the assumption holds at equilibrium.

5Period t searchers can be matched and start producing in period t. This is a standard assumption
in sticky-price models with no capital and exogenous separation, which keeps the model simple and
seems to be reasonable if a period is interpreted as a quarter.
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Therefore, Ut ≡ (1− ft)St and employment evolves as follows:

Et = (1− ρ)Et−1 + ftSt

= (1− ρ)(1− ft)Et−1 + ftNt

= (1− ρ)Et−1 +
ft

1− ft
Ut,

(2)

where the second equality follows from (1) and the third from the definition of an
unemployed worker. Hence, if the household is allowed to choose Nt conditional on the
finding rate and the stock of non-employed Et−1, she can also decide indirectly on Et
and Ut by suitably assigning members to search and non-participation.

The employed earn a nominal wage Wt and the unemployed are entitled to real un-
employment benefits b. Consumption risks across members are pooled and all decisions
are collectively taken by the household.6 She buys market goods Ct(i) at price Pt(i),
i ∈ [0, 1], zero-coupon nominal bonds Dt at a price R−1

t , and pays lump-sum taxes Tt.
Hence, the budget constraint is∫ 1

0

Pt(i)Ct(i) di+R−1
t Dt ≤ Dt−1 +WtEt + PtbUt + Tt. (3)

We assume that the household values consumption of both market- and home-produced
goods according to7

E0

∞∑
t=0

βt
[
Zt log(Ct) + φ

h1+ν
t

1 + ν

]
; ν ≤ 0 (4)

where Ct ≡
[∫ 1

0
Ct(i)

ε−1
ε di

] ε
ε−1

, ε ≥ 1, Pt is the price of the market consumption bundle

minimizing total nominal expenditure and ht represents home-produced goods.
We assume that home goods enter the utility function separably from market con-

sumption as leisure does in most of the business cycle literature.8 φ is a scaling param-
eter that can be chosen to match a target value for the steady-state participation rate,
and −ν is the inverse intertemporal elasticity of substitution of home consumption.
We allow for a preference shock, Zt, where log(Zt) = ρz log(Zt−1) + ξzt , and ξzt is an
i.i.d. shock with zero mean and variance σ2

z .
Home goods are the product of housework time. Since the responsiveness of time

use to changes in market time is stable across labor market statuses, we focus on

6See Andolfatto (1996) and Merz (1995).
7As suggested by the microeconomic evidence, the market-housework margin is three to four times

more elastic than the conventional one between consumption and leisure. Hence, for simplicity we
abstract from the latter. See Aguiar et al. (2013) for further discussion in this respect.

8Separability has been motivated by early contributions, such as by Eichenbaum et al. (1988) and
Campbell and Mankiw (1990).
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the extensive margin.9 After normalizing to one the housework time forgone by the
employed, as compared to the non-participant, the search cost Γ ∈ (0, 1) is the fraction
of housework time forgone by the unemployed relative to the employed. We assume a
production function that has decreasing returns to scale:

ht = [Aht (1− Et − ΓUt)]
1−αh , (5)

where αh ∈ [0, 1), log(Aht ) = ρah log(Aht−1) + ξaht , and ξaht is an i.i.d. shock with zero
mean and variance σ2

ah.
10

The household decides on Ct(i), ht, Dt, Et, Ut, St, Lt and Nt for any t and i taking
as given all prices, the finding rate, E−1, and D−1 in order to maximize (4) subject to
(1), (2), (3), (5) as well as Lt = 1− Et − Ut and Nt = Et + Ut.

2.2. Intermediate-good producers and final retailers

As in the standard Mortensen and Pissarides (1999) framework, any intermediate-
good firm j ∈ [0, 1] that is not matched with a worker at time t might decide to post
a vacancy and pay a cost of κ units of the final good C. If the vacancy is filled, the
firm immediately starts producing Xt(j) = At, where log(At) = ρa log(At−1) + ξat and
ξat is an i.i.d. shock with zero mean, variance σ2

a. The firm keeps producing until the
job is exogenously discontinued. P x

t denotes the price of the intermediate good, and
V J
t represents the value of a filled vacancy expressed in terms of the final consumption

bundle.11

We model sticky-price producers à la Calvo (1983) following the standard textbook
version, as in Gaĺı (2008) or Woodford (2003). Any firm i ∈ [0, 1] produces a differen-
tiated good using technology Yt(i) = Xt(i)

1−α in a regime of monopolistic competition.
In any period, with probability 1− δ each firm has the chance to reset the price Pt(i)
so as to maximize profits. With probability δ the firm sticks to the price charged in
the previous period.

2.3. Employment and wages

Searchers and job vacancies Vt are matched according to a standard constant-
returns-to-scale technology

Mt = ωV 1−γ
t Sγt . (6)

9For instance, see Aguiar et al. (2013).
10We also allow for positive correlation between innovations to home and market technology, denoted

by ρξ. Some types of technology might indeed be relevant for both the home and the market sector
– for example, in the case of Internet-related innovations – and the quantity or the quality of home
capital goods might covary with market productivity, as suggested by positive co-movements of home
appliances consumption with market production (see the appendix for details). Since we abstract
from capital accumulation for the sake of simplicity, those co-movements may be captured in reduced
form by positive correlation of technology across sectors.

11See the appendix for the derivation.
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Define labor market tightness as θt ≡ Vt/St. Hence, participation and vacancy posting
decisions jointly determine the finding rate ft = ωθ1−γ

t , the filling rate qt = ωθ−γt and
employment through (2).

After computing the surplus of employing one additional member, V w
t , we assume

that the wage is determined according to Nash bargaining so that ηV w
t = (1 − η)V J

t ,
where η is the firm’s bargaining power.12

3. Steady state and calibration

In this section, we explain the choice of parameter values other than the shocks,
which we discuss in the following section. We restrict to a zero-inflation non-stochastic
steady state.

Some parameters are relatively uncontroversial in the literature and are set to values
consistent with microeconomic evidence and/or previous contributions. This is the case
for ρ, β, α, ε and δ, all displayed in Table 2.

A second group of parameters is calibrated so as to match steady-state values of
labor market variables to their observed counterpart. This is the case for ω and φ.
Targeting the employment rate, the participation rate and the job-filling rate delivers
the values reported in Table 2 and a steady-state value for the job-finding rate equal
to 0.6572.13

Concerning the home sector, some parameters are hardly identifiable and we fix
them in order to maintain symmetry with respect to the market sector and/or com-
parability with previous studies. For instance, we assume that αh = α = 1/3. Our
interpretation of h as home production rather than leisure disconnects ν from the
Frisch elasticity of labor supply. However, one can compute its steady-state value.
Given αh = 1/3, ν = −5 implies an elasticity of about 0.2, a value commonly used in
the literature and in line with the microeconomic evidence.14

A subset of parameters is crucial for labor market dynamics and deserves more
in-depth discussion. This is the case for b, η, γ, κ and Γ: we calibrate these parame-
ters by resorting to independent microeconomic evidence. First, from Petrongolo and
Pissarides (2001) and Mortensen and Nagypal (2007), we know that η has to lie on
the interval (0.3, 0.5). We choose the midpoint η = 0.4. The Hosios condition requires
γ = 0.6.15 We are left with κ, Γ and b. Define the replacement rate as RR ≡ bP/W .

12The case of stochastic bargaining power does not affect our main results and we leave it to the
appendix.

13We use U.S. quarterly data from Federal Reserve Economic Data (FRED II) on employment and
the labor force over the period 1964Q1-2006Q3.

14In the appendix, we show derivations and values of labor supply elasticity for alternative param-
eterizations.

15In the appendix, we characterize Pareto efficiency and we show that the conventional Hosios
condition applies to our model.
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At the steady state, the following relations must hold:

κ =
ε− 1

ε
(1− α)E−α

qv̄

1 + v̄[1− β(1− ρ)]
; v̄ ≡ κ

q

(
W

P

)−1

(7)

RR = Γ

{
1− 1− η

η
(1− f) [1− β(1− ρ)] v̄

}
− 1− η

η
fv̄ (8)

b =
ε− 1

ε
(1− α)E−α

RR

1 + v̄[1− β(1− ρ)]
, (9)

where variables without a time subscript denote the steady state. We pin down κ by
targeting vacancy costs per filled job as a fraction of the real wage, v̄, which has been
estimated at about 0.045.16

If v̄ is targeted, setting the search cost implies a value for the unemployment bene-
fit and the replacement rate. Some information on RR and Γ is available. Petrongolo
and Pissarides (2001) and Mortensen and Nagypal (2007) argue that replacement rates
vary over the range (0.2, 0.4). We use the American Time Use Survey (ATUS) to re-
cover some information on Γ by exploiting its home-production interpretation. The
ATUS provides nationally representative estimates of how Americans spend their time
supplying data on a wide range of non-market activities, from child care to volunteer-
ing.17 Table 1 shows time devoted to home production, measured in minutes per day,
depending on the employment status. Γ = 0.44 implies RR = 0.4 and is the only value
that squares the evidence from Petrongolo and Pissarides (2001) and Mortensen and
Nagypal (2007) with home-production data, through equation (8). Hence, we choose
b accordingly.

The implied relative average value of non-work to work activity is large and about
0.95. However, it depends only on the targets for the job-filling and the employment
rates, and it is thus independent of all other parameters, including Γ, which, as we
show below, drives the response of labor market variables to shocks.

4. Participation dynamics and labor market variables

The objective of this section is threefold: we illustrate how shocks propagate to
labor market variables; we compare our model to an alternative one that assumes
exogenous participation; and we evaluate our model against the data.

16We are following Hagedorn and Manovskii (2008) and Gaĺı (2010).
17ATUS individuals are randomly selected from a subset of households that have completed their

eighth and final month of interviews for the Current Population Survey (CPS). In the sample, we
can observe minutes per day devoted to paid activities and home production for a cross-section of
approximately 98,000 individuals over the period 2003-2009. In Table 1, we consider the whole sample
and a shorter one excluding the years of the recent crisis.
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4.1. Endogenous participation

Log-linearizing the model around the deterministic steady state eases intuition.
Wage bargaining and the participation choice imply

θ̂t = (1− Φb)M̂RSt, (10)

where the following definition applies:

M̂RSt ≡
(
ν − αh

1− αh

)
ĥt + Ĉt + Âht − Ẑt. (11)

Φb is a steady-state efficiency wedge and variables with a hat denote log-deviations
from the steady state.18 Equation (10) states that the household chooses participation
to make the marginal rate of substitution between market consumption and home pro-
duction proportional to labor market tightness. Assume that tightness increases: the
finding rate rises and so does the opportunity cost of home producing. At an optimum,
the marginal rate of substitution also has to increase and, given market consumption,
the household reduces home production by adjusting participation upward: according
to a conventional substitution effect, participation increases in labor market tightness.
On the other hand, for a given tightness, the desired home-production level increases
in market consumption according to a conventional income effect. Hence, as long as
market consumption increases with tightness at equilibrium, the participation rate can
increase or decrease, depending on which of the two effects prevails.

Price stickiness introduces a conventional Phillips curve:

π̂t = βEt{π̂t+1} − λµ̂t, (12)

where π̂t ≡ logPt − logPt−1, r̂t ≡ R̂t −Et{π̂t+1}, λ ≡ (1−δ)(1−βδ)
δ

1−α
1−α+αε

, and µ̂t denotes
the average price markup, which evolves according to

−µ̂t = χ̂t −
[
(1− α)Ât − αÊt

]
, (13)

where χ̂t is the labor cost faced by intermediate-goods producers, including the option
value of being in a match, and it equalizes the cost that final-goods producers have
to pay for an additional unit of the intermediate good. The average price markup
increases when the labor cost falls below the marginal factor product. Because of
matching frictions, the labor cost can be written as19

χ̂t ≡
εEα

(1− α)(ε− 1)

{
γκθ

(1− γ)f

[
θ̂t − β(1− ρ)(1− f)Et{θ̂t+1}

+β(1− ρ)
(1− γf)

γ
r̂t

]
+ (1− Γ)MRSM̂RSt

}
.

(14)

18In the appendix we show that at the Pareto efficient equilibrium, Φb = 0.
19This is similar to Ravenna and Walsh (2011).
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The value of being in a match, and thus the real wage, rises when the labor market
is tight. Accordingly, labor cost increases and decreases in current and future tight-
ness, respectively. Similarly, workers’ outside option co-moves with the marginal rate
of substitution and exerts upward pressure on the labor cost. When Γ tends to 1, the
contribution of an additional unemployed worker in the home sector is nil, and fluc-

tuations of M̂RSt do not affect the outside option, the real wage, or the incentive to
post vacancies. We close the model by assuming that the central bank follows a simple
Taylor rule:

R̂t = φππ̂t + φY Ŷt − φuût, (15)

where Yt ≡
[∫ 1

0
Yt(i)

ε−1
ε di

] ε
ε−1

is aggregate output and ut ≡ Ut/Nt is the unemployment

rate. We assume that φπ = 1.5 and φY = φu = 0, and we analyze impulse-response
functions to technology and preference shocks.20

As shown in Figure 1, after a market technology shock, tightness increases and
participation drops, making the labor market much tighter. The unemployment rate
falls and employment is boosted. Because of sticky prices, output and tightness cannot
increase as much as under flexible prices and the cost of labor falls below its marginal
product, with the result that inflation falls. Conditional on market technology shocks,
the income effect prevails and participation is countercyclical. A preference shock

exogenously reduces M̂RSt. The outside option, and thus the bargaining position of
workers, worsens and tightness increases because of vacancy posting. The household’s
response is driven by a substitution effect and participation adjusts upward. At general
equilibrium, the unemployment rate falls as the surge in the labor force does not
outbalance the larger finding rate. After a shock to home technology, it is feasible to
home produce more without reducing the labor force. The income effect drives the
household’s decision and the surge in participation is so large that both employment
and the unemployment rate increase on impact. Finally, note that when home and
market technology are positively correlated, participation and employment increase
after a productivity shock, while the unemployment rate falls.21

4.2. Endogenous versus exogenous participation

To emphasize the role of the participation decision, we compare our model to an
alternative one, where the household values and produces home goods according to (4)
and (5), respectively, but participation is constrained by Nt = N ∈ (0, 1). Any part of
the model other than the household’s decision problem is not affected by the additional
constraint. Hence, equilibrium conditions are the same across models up to equation

20We consider more general rules when performing our policy analysis.
21Similarly, Campbell and Ludvigson (2001) assume a positive correlation between market and

home technology shocks in a real business cycle model with home production so as to match the
procyclicality of hours worked.
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(10), which fails under exogenous participation. We calibrate the exogenous participa-
tion model as described above and we obtain the same parameter values reported in
Table 2. Hence, differences across models are entirely attributable to the propagation
channel created by the participation margin. Figure 2 plots impulse responses of the
participation rate, the marginal rate of substitution and labor market tightness to a
market technology shock for different values of the search cost in both models.

Three facts are important. First, labor market volatility increases in Γ in the
exogenous participation model. After a market technology shock, the marginal rate of
substitution is procyclical. Hence, the outside option is also procyclical and it is so to a
smaller extent the larger is Γ. This fact discourages vacancy posting. Chodorow-Reich
and Karabarbounis (2013) argue that the way out of the Shimer puzzle proposed by
Hagedorn and Manovskii (2008) is not viable if an outside option as procyclical as in
the data is incorporated in a standard model with matching frictions. For empirically
plausible values of Γ, our finding is in line with Chodorow-Reich and Karabarbounis
(2013). Second, the relation between labor market volatility and the search cost is
inverted in the case of endogenous participation. When Γ is small, moving members in
and out of the labor force is less costly; the volatility of participation increases and it
transmits to labor market tightness. The marginal rate of substitution and the outside
option move consistently. Hence, the presence of a participation margin helps mitigate
the Shimer critique. Indeed, conditional on market technology shocks, the volatility of
the unemployment rate relative to output is 5.40, against only 0.12 under exogenous
participation.22 Finally, and related to the last fact, when the search cost is large, the
volatility of participation falls dramatically and the two models move closer in terms
of labor market volatility.

4.3. Second moments

The conditional evidence on the response of the participation rate to technology
shocks is controversial. Gaĺı (2010) finds a negative response by using conventional
long-run restrictions to identify shocks to productivity. Christiano et al. (2012) find
the opposite under the same identification strategy but using a different specification
of the vector autoregression.23 Hence, we opt to assess the model by examining the
unconditional evidence.

We set the serial correlation of all shocks to 0.9 and then we calibrate their standard
deviation as well as ρξ to minimize the average distance of simulated unconditional mo-
ments from their empirical counterparts. We target the standard deviation of output,
the standard deviation of employment, and that of the unemployment rate relative to

22See Table 4, column R2.
23Christiano et al. (2012) rationalize their finding with a variable search effort model that delivers

procyclical search intensity as an equilibrium outcome. However, Mukoyama et al. (2013) examine
evidence from ATUS and CPS and argue that, in the data, search effort is countercyclical.
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output and the correlation of the unemployment rate with output.24 We determine
parameters simultaneously by performing a grid search. Then, we assess our model by
examining the standard deviation of the participation rate relative to output and the
correlation of the participation rate with output, two moments that we have not tar-
geted. We repeat the calibration exercise for the exogenous participation model. Table
3 reports the empirical and the simulated moments for both models. By construction,
they both account well for fluctuations in targeted labor market variables. In addition,
the participation dynamics implied by our model is well in line with the data.

5. Participation and monetary policy

In this section, we show that the endogenous and the exogenous participation mod-
els deliver remarkably different implications for the effects of monetary policy on labor
market variables, and different rankings of alternative monetary policy rules.

We start by considering a simplified version of the model that assumes efficiency at
the steady state.25 Following a linear-quadratic approach, it is straightforward to show
after some algebra that, in both models, price stability implements Pareto efficiency
and is thus optimal.26

The calibrated version of the model features steady-state distortions. For this case,
we resort to a conventional second-order perturbation method and evaluate the per-
formance of alternative simple rules in the class defined by (15) against strict inflation
targeting, i.e. πt = 0 at all times. Table 4 shows the policy rules we consider and the
results conditional on each shock.27 As compared to a strict target on inflation, both
rules R2 and R3 always rank lower. Thus, strict inflation targeting provides a good
benchmark against which to evaluate the simple rules.

We can draw several conclusions. First, a rule that neither fully stabilizes inflation
nor targets the unemployment rate, R2, is suboptimal in both models, and switching
to strict inflation targeting is always welfare improving. However, the predicted change
in volatilities associated with the policy switch differs across models. Conditional on
technology shocks, in both models a strict target on inflation magnifies the volatility of
labor market variables, since it eliminates inefficient fluctuations in price markups and

24We apply a Hodrick-Prescott filter with a conventional smoothing parameter of 1,600 to extract
the business-cycle component from seasonally adjusted data.

25We show in the appendix that this is the case when the unemployment benefit is zero and final-
goods production is appropriately subsidized to undo the monopolistic distortion.

26We also show that the introduction of bargaining shocks changes our result only marginally, since
strict inflation targeting delivers negligible welfare losses. This finding extends the results of Ravenna
and Walsh (2011) to an endogenous participation model.

27For the sake of brevity, and to emphasize that our results are robust to the calibration of shocks,
we report only conditional moments. In the appendix we report unconditional moments and the
associated welfare losses. Also, we do not show results referring to a classical Taylor rule, assuming
that φπ = 1.5, φy = 0.5/4, and φu = 0, because it is always dominated by the others.
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boosts the response of aggregate demand and, through vacancy posting, of labor mar-
ket tightness. However, the participation rate, which reacts to tightness, also becomes
more responsive under a strict inflation target. Hence, the exogenous participation
model overstates the change, since it neglects the surge in volatility of the counter-
cyclical movement in participation that counterbalances the rise in vacancy posting. A
similar argument applies to home technology and preference shocks. If participation is
exogenous, the policy switch affects the volatility of output, but not the volatility of
labor market variables relative to output.28 In contrast, if the participation rate is free
to move, the volatility of the unemployment rate falls after the policy change. Overall,
under our calibration of the shocks, the endogenous participation model predicts that
after switching to strict inflation targeting the volatility of the unemployment rate will
fall, while the exogenous participation model predicts the opposite.

Second, whether a rule assigning some weight to the unemployment rate, R3, ranks
higher or lower than R2 largely depends on the joint behavior of inflation, unemploy-
ment and participation. Under market technology shocks, R3 performs better than
R2 only if participation is constant. After a market technology shock, inflation falls
and price markups increase. In the exogenous model, targeting the unemployment rate
destabilizes inflation and markups but it helps stabilize employment, and overall R3
ranks higher. However, if participation is free to reallocate labor from the market to the
home sector, employment is stabilized automatically by the more-volatile participation
rate, the concern for price stability prevails and R2 ranks higher. The rank inverts
under home technology shocks which, acting as positive labor supply shocks, tend to
reduce the labor cost and increase price markups.29 Conditional on those shocks, the
unemployment rate is procyclical under endogenous participation and countercyclical
under exogenous participation, making R3 more accommodative in the former case but
tighter in the latter. Hence, only in the former case does some weight on unemployment
help sustain aggregate demand and thus contain price markup volatility. Finally, un-
der preference shocks, the unemployment rate is countercyclical in both models, while
inflation increases after the shock. Now R3 is always preferred to R2 because, given the
behavior of the unemployment rate, it allows inflation and price markup volatility to be
contained. Overall, under our calibration of the shocks, the endogenous participation
model predicts that R3 ranks higher than R2, while the opposite holds if participation
is constant.

6. Conclusions

We incorporate a labor market participation decision in an otherwise-standard New
Keynesian model with matching frictions. We show that monetary policy, by affecting

28Looking at the production functions, it is clear that the volatility of employment relative to output
has to be equal to 1/(1−α) = 1.5, while for the unemployment rate the coefficient of proportionality
is E/(U(1− α)) = 23.97.

29This fact is made evident by the negative response of inflation shown in Figure 1.
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vacancy posting, also affects the incentive to participate in the labor market which, in
turn, feeds back into the vacancy posting decisions by changing the workers’ outside
option (via changes in the marginal rate of substitution between home and market
goods). As a consequence, the effects and desirability of alternative policies cannot
be evaluated abstracting from the participation margin. Indeed, the ranking of simple
monetary policy rules against strict inflation targeting can be reversed across models.
Finally, we contribute to the literature by showing that the presence of a participation
margin boosts the volatility of both labor market tightness and the unemployment
rate, thereby mitigating the Shimer critique.
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Table 1: Time allocated to home production and search activity (minutes per day). Data are from
the American Time Use Survey (ATUS) and were collected over the period 2003-2009.

Status 2003-2009 2003-2006
Home Prod. Search Home Prod. Search

Employed 119 0.52 118 0.49
Unemployed 154 23 155 20

Not in labor force 178 0.37 182 0.28
Search cost Γ 0.41 0.44

Table 2: Calibration of all parameters other than policy and shock parameters. We use U.S. quarterly
data from Federal Reserve Economic Data (FRED II) on employment and the labor force over the
period 1964Q1-2006Q3 to compute the steady state of the employment and participation rates.

Mnemonic Value Target/Source

β 0.99 4% average real return
ε 6 20% price markup
δ 2/3 Price duration
ρ 0.12 Shimer (2005)
α 1/3 Gaĺı (2010)
αh 1/3 Symmetry with market sector
ν -5 0.2 Frisch elasticity
ω 0.66 94% employment rate

2/3 job-filling rate
φ 0.04 64% participation rate

η 0.4
Petrongolo and Pissarides (2001)
Mortensen and Nagypal (2007)

γ 0.6 Hosios condition
κ 0.0196

v̄ = 0.045 - Gaĺı (2010)
ATUS

Γ 0.44
b 0.2617
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Table 3: Selected unconditional moments. We compare standard deviations (relative to output) of
selected variables in the endogenous and exogenous participation models, and in the data. Volatilities
are expressed in percentage standard deviations. The parameters of the shocks have been chosen
so as to give the best possible fit for the first four moments. Data moments are computed using
U.S. quarterly data from Federal Reserve Economic Data (FRED II), to which we applied a standard
Hodrick-Prescott filter.

Unconditional Moments Data Endogenous Exogenous

Output volatility 1.53 1.43 1.56
Unemployment rate volatility 7.36 7.36 7.55

Employment volatility 0.63 0.67 0.47
Correlation of unempl. rate with output -0.85 -0.76 -1

Participation rate volatility 0.20 0.24 -
Correlation of participation with output 0.42 0.56 -

Calibrated Parameters

σa 0.0070 0.0070
σah 0.0037 0.0074
σz 0.0147 0
ρξ 0.9474 1

Table 4: Conditional moments and welfare losses. We compare standard deviations (relative to
output) of selected variables in the endogenous and exogenous participation models under three rules.
Volatilities are expressed in percentage standard deviations. We also report welfare losses (in terms
of steady-state consumption) of deviating from strict inflation targeting (R1) and adopting one of the
two alternative rules. R2: φπ = 1.5 and φy = φu = 0. R3: φπ = 1.5, φy = 0 and φu = 0.5/4.

Endogenous Exogenous
R1 R2 R3 R1 R2 R3

Market Technology Shocks (i.e., σa = 0.01, σah = σz = 0)
Output (%) 1.77 1.61 1.42 1.67 1.54 1.53

Unemployment rate 8.34 5.40 1.11 2.07 0.12 0.03
Employment 0.20 0.07 0.12 0.13 0.01 0.002

Participation rate 0.32 0.27 0.19
Welfare Losses 0.0155 0.0205 0.0319 0.0093

Home Technology Shocks (i.e., σah = 0.01, σa = σz = 0)
Output (%) 0.53 0.50 0.60 0.70 0.66 0.19

Unemployment rate 7.28 9.63 1.49 23.97 23.97 23.97
Employment volatility 1.50 1.50 1.50 1.5 1.5 1.5

Participation rate 1.90 2.10 1.59
Welfare Losses 0.0068 0.0013 0.0033 0.1293

Preference Shocks (i.e., σz = 0.01, σa = σah = 0)
Output (%) 0.20 0.41 0.27 0.26 0.44 0.12

Unemployment rate 7.88 15.91 4.38 23.97 23.97 23.97
Employment 1.50 1.50 1.50 1.5 1.5 1.5

Participation rate 1.94 0.52 1.23
Welfare Losses 0.7250 0.0100 0.5743 0.1261
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Figure 1: Impulse responses to a one percent market technology (“Mkt”), preference (“Pref”), and
home technology (“Home”) shock. “Mix”is the response of simultaneous shocks to market and home
technology of 1 and 0.5 percent, respectively.
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Figure 2: Impulse responses of labor market tightness, the marginal rate of substitution, and the par-
ticipation rate to a one percent market technology shock in the exogenous (left panel) and endogenous
(right panel) participation model for different values of Γ.
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Appendix A. Endogenous participation model

Appendix A.1. Households

Solving the household’s optimization problem we obtain a conventional Euler equa-
tion

βRtEt

{
Ct
Ct+1

Zt+1

Zt

Pt
Pt+1

}
= 1, (A.1)

and the following participation condition:[
1− ft
ft

]
(ΓMRSt − b) =

Wt

Pt
−MRSt+

(1− ρ)Et

{
Qt,t+1

(1− ft+1)

ft+1

(ΓMRSt+1 − b)
}
,

(A.2)

where Qt,t+1 ≡ β Ct
Ct+1

Zt+1

Zt
, and MRSt ≡ φhνtCt

Zt
Aht (1 − αh)h

− αh
1−αh

t . Note that, absent

matching frictions, ft = 1 ∀t and equation (A.2) simplifies to a standard labor supply
where the real wage equals the marginal rate of substitution between market consump-
tion and home production.

Appendix A.2. Intermediate-good producers

For firms in the intermediate sector, the value of a filled vacancy, V J
t , expressed in

terms of the final consumption bundle Pt, is given by

V J
t =

P x
t

Pt
At −

Wt

Pt
+ (1− ρ)Et

{
Qt,t+1V

J
t+1

}
. (A.3)

The free-entry condition ensures that

κ

qt
= V J

t . (A.4)

Substituting (A.4) into (A.3) gives the job-creation condition

κ

qt
=
P x
t

Pt
At −

Wt

Pt
+ (1− ρ)Et

{
Qt,t+1

κ

qt+1

}
. (A.5)

Appendix A.3. Final retailers

Final retailers face a downward-sloping demand function

Yt(i) =

[
Pt(i)

Pt

]−ε
[Ct + κVt]. (A.6)

When price rigidity à la Calvo (1983) is assumed, optimal pricing for a firm allowed to
reoptimize in t requires

∞∑
T=0

δTEt

{
Qt,t+T

Yt+T (i)

Pt+T

[
P ∗t (i)− ε

ε− 1
τpMCt+T (i)

]}
= 0, (A.7)
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where 1 − δ represents the probability of reoptimizing and τp < 1 is a production
subsidy. Log-linearizing (A.7) around the zero-inflation symmetric steady state, we
obtain the New Keynesian Phillips Curve (NKPC)

π̂t = βEt{π̂t+1}+ λm̂ct, (A.8)

where λ ≡ (1−δ)(1−βδ)
δ

1−α
1−α+αε

and lowercase variables with a hat represent log-deviations
from steady state.

Appendix A.4. Wage determination

Define the value function associated with the household’s optimization problem as

Vt = max
Et,Dt

{Ut + βEt {Vt+1}} ; Ut ≡ Zt log(Ct) + φ
h1+ν
t

1 + ν
, (A.9)

where constraints

St = Nt − (1− ρ)Et−1 (A.10)

Et = (1− ρ)Et−1 + ftSt

= (1− ρ)(1− ft)Et−1 + ftNt

= (1− ρ)Et−1 +
ft

1− ft
Ut

(A.11)

∫ 1

0

Pt(i)Ct(i) di+R−1
t Dt ≤ Dt−1 +WtEt + PtbUt + Tt (A.12)

ht = [Aht (1− Et − ΓUt)]
1−αh (A.13)

Lt = 1− Et − Ut (A.14)

Nt = Et + Ut (A.15)

have been taken into account. The envelope condition and the first-order condition
with respect to employment are

∂Vt+1

∂Et
= (1− ρ)

Zt+1

Ct+1

1− ft+1

ft+1

(ΓMRSt+1 − b) , (A.16)

∂Vt
∂Et

=
∂Ut
∂Et

+ β
∂Vt+1

∂Et

=
Zt
Ct

[
Wt

Pt
+

(b− ΓMRSt)(1− ft)
ft

−MRSt

]
+ β

∂Vt+1

∂Et
,

(A.17)

respectively.30 The household bargains the wage on behalf of her members as soon as
one of them meets a firm. Such an event happens conditional on incurring the search

30By substituting (A.16) into (A.17), one gets the participation condition (A.2).
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cost Γ. Equivalently, if the household and the firm do not reach an agreement and
deviate from equilibrium, the member enters the unemployment rather than the em-
ployment pool after the participation rate has been chosen. Therefore, we compute the
surplus of employing one additional member, V w

t , by keeping constant the participation
rate at t:

V w
t ≡

∂Vt
∂Et

∣∣∣∣
Nt=N̄

=
∂Ut
∂Et

∣∣∣∣
Nt=N̄

+ β
∂Vt+1

∂Et

=
Wt

Pt
− b− φhνt (1− Γ)Ct

Zt
Aht (1− αh)h

− αh
1−αh

t +

Et
{
Qt,t+1(1− ρ)(1− ft+1)V w

t+1

}
,

(A.18)

where (A.18) assumes a constant participation rate at time t and the second equality
makes use of (A.16). The surplus from the match is split according to Nash bargaining:

ηtV
w
t = (1− ηt)V J

t . (A.19)

ηt denotes the bargaining power of firms, is exogenous and evolves according to

log(ηt) = (1− ρη) log(η) + ρη log(ηt−1) + ξηt , (A.20)

where η ∈ (0, 1) and ξηt is an i.i.d. shock with zero mean and variance σ2
η. The equations

in the paper refer to the simplified version with no shocks to the bargaining power, i.e.
ηt = η ∀t. Using the definitions of V J

t and V w
t in (A.19), together with the free-entry

(A.4) and the job-creation condition (A.5), it is possible to derive the wage equation:

Wt

Pt
= (1− ηt)

P x
t

Pt
At + ηt [b+ (1− Γ)MRSt] +

(1− ρ)Et

{
β
Ct
Ct+1

Zt+1

Zt
κθt+1(1− ηt+1)

}
.

(A.21)

Appendix A.5. Market clearing conditions

The aggregate production of the intermediate sector is given by

Xt =

1∫
0

Xt(j)dj = AtEt. (A.22)

Integrating the demand for good i (A.6) yields the conventional aggregate resource
constraint

Yt = Ct + κVt, (A.23)

after defining aggregate output as

Yt =

 1∫
0

Yt(i)
ε−1
ε di


ε
ε−1

. (A.24)
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Combining the demand for final goods (A.6) with their production function and inte-
grating delivers the aggregate production function

Yt = X1−α
t ∆α−1

t , (A.25)

where the following definition applies:

∆t =

1∫
0

(
Pt(i)

Pt

) −ε
1−α

di, (A.26)

and ∆t, bounded by 1 from below, is a measure of price dispersion.

Appendix B. The planner’s solution

In this section we first define the social planner’s problem for both the endogenous
and the exogenous participation models. Then, after reducing the dimension of the
problems, we show that the necessary conditions for efficiency can be nested into a
single system of equations that applies to both models. This fact eases the derivation
of the welfare function. Finally, we compute a first-order approximation of efficiency
conditions around the non-stochastic steady state.

Appendix B.1. Defining efficiency in the exogenous participation model

The planner chooses {Ct, ht, Et, Ut, Nt, Vt, St, ft}∞t=0 in order to maximize

E0

∞∑
t=0

[
Zt log(Ct) + φ

h1+ν
t

1 + ν

]
, (B.1)

subject to
Et = (1− ρ)Et−1 + ftSt (B.2)

ft = ω

(
Vt
St

)1−γ

(B.3)

St = Et + Ut − (1− ρ)Et−1 (B.4)

Et + Ut = Nt (B.5)

(AtEt)
1−α = Ct + κVt (B.6)

ht = [Aht (1− Et − ΓUt)]
1−αh , (B.7)

and to the additional constraint that Nt = N , where N < 1 is exogenously given.
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Appendix B.2. Defining efficiency in the endogenous participation model

The planner chooses {Ct, ht, Et, Ut, Nt, Vt, St, ft}∞t=0 in order to maximize (B.1) sub-
ject to (B.2)-(B.7). We restrict parameter φ and the stochastic processes for exogenous
shocks so that there exists an interior solution to the endogenous participation problem,
i.e., N∗t < 1 for all t.

Appendix B.3. Characterizing efficiency

Before solving the social planner’s problem, it is useful to reduce the dimension of
the system. Combine equations (B.2)-(B.7) to obtain

Ct = (AtEt)
1−α − κ

ω
θγt [Et − (1− ρ)Et−1] , (B.8)

h
1

1−αh
t = Aht

(
1− Et − Γ

1− ωθ1−γ
t

ωθ1−γ
t

Et + Γ(1− ρ)
1− ωθ1−γ

t

ωθ1−γ
t

Et−1

)
, (B.9)

and

Nt =
1

ωθ1−γ
t

Et −
(1− ρ)(1− ωθ1−γ

t )

ωθ1−γ
t

Et−1. (B.10)

We are now ready to restate the definition of efficiency in a more compact form. An
allocation {C∗t , h∗t , θ∗t , E∗t , N∗t }∞t=0 is efficient in the exogenous participation model if
it maximizes (B.1) subject to (B.8), (B.9), (B.10) and Nt = N , where N < 1 is
exogenously given. An allocation {C∗t , h∗t , θ∗t , E∗t , N∗t }∞t=0 is efficient in the endogenous
participation model if it maximizes (B.1) subject to (B.8), (B.9), (B.10) and Nt <
1. The problem can be solved in two steps: first choose {C∗t , h∗t , θ∗t , E∗t }∞t=0 so as to
maximize (B.1) subject to (B.8) and (B.9); then, pick the participation rate that,
given E∗t , E

∗
t−1, and θ∗t , satisfies (B.10). By definition, (B.10) is redundant in the first-

stage problem and, if included, the associated Lagrangian multiplier must be equal to
zero. In contrast, after substituting Nt = N , the constraint is binding in the exogenous
participation problem. Now use (B.8) and (B.9) to substitute for C∗t and h∗t in (B.1)
and let λt be the Lagrange multiplier associated with (B.10). Then, the first-order
conditions (FOCs) associated with the exogenous participation model can be written
as

• FOC w.r.t. θ∗t :

κθ∗t
γ

1− γ
= ΓMRS∗t − λt

C∗t
Zt
. (B.11)
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• FOC w.r.t. E∗t :

κ

ω
(θ∗t )

γ +MRS∗t Γ
1− f ∗t
f ∗t

= (1− α)A1−α
t (E∗t )

−α −MRS∗t

+ β(1− ρ)Et

{
C∗t
C∗t+1

Zt+1

Zt

[
κ

ω
(θ∗t+1)γ + Γ

1− f ∗t+1

f ∗t+1

MRS∗t+1

]}
+ λt

C∗t
Zt

(
1 +

1− f ∗t
f ∗t

)
− β(1− ρ)Et

{
λt+1

C∗t
Zt

1− f ∗t+1

f ∗t+1

}
. (B.12)

Equations (B.11) and (B.12) apply to both models, but only under endogenous partic-
ipation λt = 0, which follows from optimizing with respect to Nt.

31

Appendix B.4. Efficient steady state
At the steady state, we assume that A = Ah = Z = 1. At the efficient steady state,

equation (B.11) becomes

κθ
γ

1− γ
= ΓMRS − λC, (B.13)

while the dynamic efficiency condition (B.12) can be rewritten as follows:

(1− β(1− ρ))

[
κθγ

ω
+MRSΓ

1− f
f

]
= (1− α)E−α −MRS+

λC

f
[1− β(1− ρ)(1− f)] .

(B.14)

For the model with endogenous participation we also have

λ = 0. (B.15)

Appendix B.5. First-order approximation of the efficient solution
In the derivations of the welfare function we will need a first-order approximation

of (B.11) and (B.12) around the efficient steady state. Log-linearizing (B.11) we obtain

κ
γ

1− γ
θθ̂∗t = ΓMRSM̂RS

∗
t − λC

(
λ̂t + Ĉ∗t − Ẑt

)
. (B.16)

Log-linearizing (B.12) we obtain

MRS
1− f
f

ΓM̂RS
∗
t = (1− α)2E−αÂt − (1− α)αE−αÊ∗t −MRSM̂RS

∗
t

+(1− ρ)β

[
1− f
f

ΓMRS +
κθγ

ω

]
Et

{
Q̂∗t,t+1

}
+ β(1− ρ)ΓMRS

1− f
f

Et

{
M̂RS

∗
t+1

}
+
Cλ

f
λ̂t − β(1− ρ)Cλ

1− f
f

Et{λ̂t+1}+ λC

[
1

f
− β(1− ρ)

1− f
f

](
Ĉ∗t − Ẑt

)
.

(B.17)

31Obviously, if the endogenous participation problem has a corner solution, the value of the Lagrange
multiplier associated with (B.10) is non-zero and its solution coincides with that of the exogenous
participation model for N = 1. Here, we restrict to cases where an interior solution exists.
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We can use (B.16) to substitute out λ̂t from (B.17)

MRS
1− f
f

ΓM̂RS
∗
t = (1− α)2E−αÂt − (1− α)αE−αÊ∗t −MRSM̂RS

∗
t

+(1− ρ)β

[
1− f
f

ΓMRS +
κθγ

ω
− 1− f

f
λC

]
Et

{
Q̂∗t,t+1

}
+ΓMRS

1

f
M̂RS

∗
t −

κθ

f

γ

1− γ
θ̂∗t + β(1− ρ)

1− f
f

κθ
γ

1− γ
Et

{
θ̂∗t+1

}
.

(B.18)

Using the steady-state relation (B.13), equation (B.18) can be further simplified to

(1− Γ)MRSM̂RS
∗
t = (1− α)2E−αÂt − (1− α)αE−αÊ∗t

+ (1− ρ)β
κ

ωθ−γ
1− γf
1− γ

Et

{
Q̂∗t,t+1

}
− κ

ωθ−γ
γ

1− γ
θ̂∗t + β(1− ρ)

κ

ωθ−γ
(1− f)

γ

1− γ
Et

{
θ̂∗t+1

}
.

(B.19)

Appendix C. Hosios condition

In this section we show that, for both versions of the model, the conventional Hosios
condition holds.

Appendix C.1. Exogenous participation

When participation is exogenous, (B.11) can be used to substitute for λt in (B.12).
The efficient allocation is then characterized by the following dynamic condition:

(1− Γ)MRS∗t +
κ

q∗t (1− γ)
= (1− α)A1−α

t (E∗t )
−α

+ (1− ρ)βEt

{
C∗t Zt+1

C∗t+1Zt

κ

q∗t+1

1− γf ∗t+1

1− γ

}
. (C.1)

Note that equation (C.1) coincides with the job-creation condition if prices are flexi-
ble, the monopolistic distortion has been eliminated ((ετp)/(ε − 1) = 1), there is no
unemployment benefit (b = 0), and the Hosios condition is verified (ηt = 1 − γ).
Hence, absent distortions unrelated to Nash bargaining, the Hosios condition sustains
the efficient allocation.

Appendix C.2. Endogenous participation

When participation is endogenous, after substituting λt = 0 in (B.11) and (B.12),
we obtain a static and a dynamic condition for efficiency:

κθ∗t
γ

1− γ
= ΓMRS∗t , (C.2)
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κ

ω
(θ∗t )

γ +MRS∗t Γ
1− f ∗t
f ∗t

= (1− α)A1−α
t (E∗t )

−α −MRS∗t

+ β(1− ρ)Et

{
C∗t
C∗t+1

Zt+1

Zt

[
κ

ω
(θ∗t+1)γ + Γ

1− f ∗t+1

f ∗t+1

MRS∗t+1

]}
.

(C.3)

First note that if b = 0, one can recover equation (C.3) by combining the participation
condition (A.2) and the job-creation condition (A.5) after imposing ηt = η. The
dynamic efficiency condition is therefore always satisfied by the market allocation.
Moreover, equations (A.4), (A.5), (A.18), and (A.19) imply that

κ

ω
θγt +

1− ηt
ηt

κ

ω
θγt − ΓMRSt = (1− α)A1−α

t E−αt −MRSt

+ β(1− ρ)Et

{
Ct
Ct+1

Zt+1

Zt

[
κ

ω
θγt+1 + (1− ft+1)

1− ηt+1

ηt+1

κ

ω
θγt+1

]}
, (C.4)

and by combining the efficiency conditions (C.2) and (C.3) we obtain

κ

ω
(θ∗t )

γ +
γ

1− γ
κ
θ∗t
f ∗t
− ΓMRS∗t = (1− α)A1−α

t (E∗t )
−α −MRS∗t

+ β(1− ρ)Et

{
C∗t
C∗t+1

Zt+1

Zt

[
κ

ω
(θ∗t+1)γ +

1− f ∗t+1

f ∗t+1

γ

1− γ
κθ∗t+1

]}
. (C.5)

Equations (C.4) and (C.5) are equivalent if ηt = 1− γ.

Appendix D. Frisch elasticity of labor supply

Recall that the production function in the home sector can be rewritten as

ht = Aht

(
1− Et

(
1 + Γ

1− ft
ft

)
+ Γ(1− ρ)

1− ft
ft

Et−1

)1−αh
. (D.1)

Let wt be the real wage. By using the participation condition (A.2) and the definition
of the marginal rate of substitution, one can write

∂Et
∂wt

wt
Et

=
∂Et

∂MRSt

MRSt
Et

∂MRSt
∂wt

wt
MRSt

=(
∂MRSt
∂ht

ht
MRSt

∂ht
∂Et

Et
ht

)−1
∂MRSt
∂wt

wt
MRSt

=

− wth
1−αh
t

(1− αh)Et(ν − αh
1−αh

)

[
MRSt

(
1 + Γ

1− ft
ft

)2
]−1

.

(D.2)
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We compute the elasticity at the steady state for different values of ν and find the
following numbers: 0.1650 if ν = −6; 0.1950, if ν = −5; 0.2383, if ν = −4; 0.3064,
if ν = −3; 0.4290, if ν = −2; 0.7150, if ν = −1. Our baseline calibration implies a
reasonable value. Given ν = −5, we also let αh vary and we find the following values:
0.1297, if αh = 1/6; 0.1093, if αh = 1/10; 0.0837, if αh = 0, i.e., under the assumption
of constant returns.

Appendix E. A purely quadratic welfare criterion

We approximate to second order the utility function. Then, we use the feasibility
constraints faced by the policy-maker, also approximated to second order, in order to
substitute out the linear terms in consumption and home production. The resulting
second-order expression contains both linear and quadratic terms. For the sake of
clarity, we analyze separately the linear terms, the squares and the cross-products. We
show that all linear terms can be substituted with linear combinations of second-order
terms so that the resulting welfare criterion is purely quadratic.

Appendix E.1. Taylor expansion of the utility function

A second-order approximation of the instantaneous utility function yields

Ut ' U + Ĉt + φh1+ν ĥt +
1

2
φ(1 + ν)h1+ν ĥ2

t + ĈtẐt + t.i.p., (E.1)

where t.i.p. stands for terms that are independent of policy.

Appendix E.2. Approximation of the feasibility constraints

Take the first feasibility constraint

Ct = ∆α−1
t (AtEt)

1−α − κ

ω
θγtEt + (1− ρ)

κ

ω
θγtEt−1, (E.2)

and approximate it to second order:

C

[
Ĉt +

1

2
Ĉ2
t

]
= −(1− α)E1−α∆̂t+[

(1− α)E−α − κθγ

ω

]
EÊt − ργ

κθγ

ω
Eθ̂t + (1− ρ)

κθγ

ω
EÊt−1+

1

2

[
(1− α)2E−α − κθγ

ω

]
EÊ2

t −
1

2
γ2ρ

κθγ

ω
Eθ̂2

t +
1

2
(1− ρ)

κθγ

ω
EÊ2

t−1+

− γκθ
γ

ω
Eθ̂t

(
Êt − (1− ρ)Êt−1

)
+ (1− α)2E1−αÂtÊt + t.i.p.

(E.3)

29



A second-order Taylor expansion of the second feasibility constraint, (B.9), reads as

ĥt +
1

2(1− αh)
ĥ2
t = (1− αh)h

− 1
1−αh

{
−
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1 + Γ
1− f
f

)
EÊt+

+(1− ρ)Γ
1− f
f

EÊt−1 + ρΓE
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1

2

(
1 + Γ

1− f
f

)
EÊ2

t +

1

2
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1− f
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EÊ2
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1

2
ρΓ
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θγ−1Eθ̂2
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ω

θγ−1Eθ̂t

(
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−
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f

)
EÊtÂ

h
t + (1− ρ)Γ

1− f
f

EÊt−1Â
h
t + ρΓE

1− γ
ω

θγ−1θ̂tÂ
h
t

}
+ t.i.p.

(E.4)

Finally, take equation (B.10) and substitute Nt = N . A second-order Taylor expansion
yields

E

f
Êt − (1− ρ)

E(1− f)

f
Êt−1 − ρ(1− γ)

E

f
θ̂t

+
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2

E
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Ê2
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f
Ê2
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2
(1− γ)2ρE

f
θ̂2
t

−(1− γ)
E

f
θ̂tÊt + (1− ρ)(1− γ)

E

f
Êt−1θ̂t = 0.

(E.5)

Thus, it follows that

− λ(1− ρ)
(1− f)E

f
Ê−1 − λ

∞∑
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βt
[
−E
f

(1− β(1− ρ)(1− f))Êt + (1− γ)ρ
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Ê2
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2

E
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Ê2
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1

2
β(1− ρ)

E(1− f)

f
Ê2
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1

2
(1− γ)2ρE

f
θ̂2
t

+(1− γ)
E

f
θ̂tÊt − (1− ρ)(1− γ)

E

f
Êt−1θ̂t

]
,

(E.6)

being λ the Lagrangian multiplier associated with the planner’s problem, evaluated at
the steady state. Equation (E.6) is satisfied both in the exogenous and the endogenous
participation model. It holds indeed for any λ in the former and in the latter λ = 0.
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Appendix E.3. Linear terms

We now use equations (E.3) and (E.4) into (E.1) to substitute for Ĉt and ĥt. After
the substitution, one can collect all linear terms appearing in the generic period t[

(1− α)E−α − κθγ

ω
− φ(1− αh)Ch

ν− αh
1−αh

(
1 + Γ

1− f
f

)]
E

C
Êt+{

Γφ(1− αh)Ch
ν− αh

1−αh − γ

1− γ
κθ

}
(1− γ)θγ−1ρE

ωC
θ̂t+{

(1− ρ)
κθγ

ω
+ Γφ(1− αh)Ch

ν− αh
1−αh (1− ρ)

1− f
f

}
E

C
Êt−1,

(E.7)

so that all the first-order terms in the approximated discounted lifetime utility read as
∞∑
t=0

βt
{
δ1Êt + δ2Êt−1 + δ3θ̂t

}
=

δ2Ê−1 +
∞∑
t=0

βt
{

(δ1 + βδ2)Êt + δ3θ̂t

}
,

(E.8)

where

δ1 + βδ2 =
{

(1− α)E−α − φ(1− αh)Ch
ν− αh

1−αh−

(1− β(1− ρ))

(
κθγ

ω
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1−αh Γ
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E

C

δ3 =

{
Γφ(1− αh)Ch

ν− αh
1−αh − γ
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κθ

}
(1− γ)θγ−1ρE

ωC
,

(E.9)

and the term δ2Ê−1 is given at time t = 0 and thus is independent of policy. It follows
from steady-state efficiency that

δ1 + βδ2 = −[1− β(1− ρ)(1− f)]
λE

f

δ3 = λ
(1− γ)ρE

f
.

(E.10)

Neglecting terms that are independent of policy, the right-hand side of (E.8) coincides
with the left-hand side of equation (E.6), so that

∞∑
t=0

βt
{
δ1Êt + δ2Êt−1 + δ3θ̂t

}
=

λE

2f

∞∑
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t

−2(1− γ)
(
Êt − (1− ρ)Êt−1

)
θ̂t

]
+ t.i.p.,

(E.11)

which we can add to the other quadratic terms in the next section.
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Appendix E.4. Quadratic terms for endogenous variables

Leaving the cross-products with the shocks for the next section, we collect the
purely quadratic terms

1

2

∞∑
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βt
[
δ1
EÊ

2
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θ θ̂
2
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2
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)
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)
θ̂t

]
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(E.12)

where the following relations hold:

δ1
E ≡

[
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ω
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(E.13)

Finally, notice that because of steady-state efficiency

δ1
θ + (1− γ)2ρ

λE

f
= −Eρ

Cf

[
γ2κθ + (1− γ)2 (ΓMRS − λC)

]
= −Eργκθ
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(E.14)

and

δθ,E =
λE

f
(1− γ). (E.15)

Therefore, the squares appearing in the welfare function are

1

2

∞∑
t=0

βt
{
δEÊ

2
t + δθθ̂

2
t + δcĈ

2
t + δhĥ

2
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, (E.16)

32



where

δE ≡ −α(1− α)
E

C
E−α,

δθ ≡ −
E

C
ρκγ

θγ

ω
.

(E.17)

Appendix E.5. Cross-products with the shocks

We are left with second-order terms where the shocks are multiplied by endogenous
variables. They are

∞∑
t=0

βt
{
δEAÊtÂt + δ1,EAhÊtÂ

h
t + δ2,EAhÊt−1Â

h
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, (E.18)

where
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(E.19)

Appendix E.6. Second-order approximation of utility

Collecting all quadratic terms, we have

W ' U

1− β
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1

2
E0

∞∑
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{
δEÊ
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δEAÊtÂt + (δ1,EAhÂ

h
t + βδ2,EAhÂ

h
t+1)Êt + δθAh θ̂tÂ

h
t + ĈtẐt

}
+ t.i.p.

(E.20)

Appendix E.7. Welfare function

The second-order approximation of the utility function can be rewritten as a sum
of squared deviations of endogenous variables from their Pareto efficient level. For a
generic variable Xt, let us define X̃t ≡ log(Xt) − log(X∗t ). Such a variable represents
the gap between the market solution and the efficient one. It is also useful to define the
deviation of the efficient allocation from the steady state as X̂∗t ≡ log(X∗t ) − log(X).
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Using these definitions, (E.20) becomes
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2
t + δθθ̃

2
t + δcC̃

2
t + δhh̃

2
t + δp∆̃t

}
+

1

2
E0

∞∑
t=0

βt
{
Ẽt
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(E.21)

Define

AA0 ≡ E0
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∗
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(E.22)

One can show that around an efficient steady state the sum of all cross-products, AA0,
is equal to zero and only squared deviations are left in (E.21). First, recall that both
the market and the Pareto efficient equilibrium have to satisfy resource constraints.
Hence, we can write
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and
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EẼt + (1− ρ)Γ

1− f
f
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Equations (E.23)-(E.24) imply that
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ẼtĈ
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(E.25)
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(E.26)
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+β(1− ρ)
κθγ

ω

E

C
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(E.27)

Therefore, we can use equations (E.25)-(E.27) to substitute for C̃t and h̃t in (E.22)
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(E.28)

Using the static efficiency condition (both in its steady-state version (B.13) and the

linear version (B.16)), we can rewrite the term in θ̃t in (E.28) as follows:
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1− γ
f

λCλ̂t.

(E.29)

If participation is endogenous, λ = 0 and the term in θ̃t drops out. If participation is
exogenous, from (E.5) we have that, up to first order,

θ̃t =
1

ρ(1− γ)
Ẽt −

(1− ρ)(1− f)

ρ(1− γ)
Ẽt−1, (E.30)
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which implies that we can substitute for θ̃t in equation (E.28) and rewrite it as follows:

AA0 = E0

∞∑
t=0

βtẼt
E

C

{
−α(1− α)E−αÊ∗t + (1− α)2E−αÂt −MRS

(
1 + Γ

1− f
f

)
Âht

+β(1− ρ)MRSΓ
1− f
f

Âht+1 −
(

(1− α)E−α − κθγ

ω

)
(Ĉ∗t − Ẑt)

−β(1− ρ)
κθγ

ω
(Ĉ∗t+1 − Ẑt+1)−MRS

(
ν − αh

1− αh

)(
1 + Γ

1− f
f

)
ĥ∗t

+β(1− ρ)ΓMRS

(
ν − αh

1− αh

)
1− f
f

ĥ∗t+1 +
λC

f

[
λ̂t − β(1− ρ)(1− f)λ̂t+1

]}
+ t.i.p.

(E.31)

This equation holds under both exogenous and endogenous participation. We can use
(B.17) to substitute for Ê∗t in (E.31)

AA0 = E0

∞∑
t=0

βtẼt
E

C

{
MRS

(
1 + Γ

1− f
f

)[(
ν − αh

1− αh

)
ĥ∗t + Ĉ∗t + Âht − Ẑt

]
−(1− ρ)β

(
κθγ

ω
+

1− f
f

ΓMRS

)(
Ĉ∗t − Ĉ∗t+1 + Ẑ∗t+1 − Ẑ∗t

)
−β(1− ρ)ΓMRS

1− f
f

[(
ν − αh

1− αh

)
ĥ∗t + Ĉ∗t + Âht − Ẑt

]
−λC
f

(1− β(1− ρ)(1− f))(Ĉ∗t − Ẑt)−MRS

(
1 + Γ

1− f
f

)
Âht

+β(1− ρ)MRSΓ
1− f
f

Âht+1 −
(

(1− α)E−α − κθγ

ω

)
(Ĉ∗t − Ẑt)

−β(1− ρ)
κθγ

ω
(Ĉ∗t+1 − Ẑt+1)−MRS

(
ν − αh

1− αh

)(
1 + Γ

1− f
f

)
ĥ∗t

+β(1− ρ)ΓMRS

(
ν − αh

1− αh

)
1− f
f

ĥ∗t+1

}
+ t.i.p.

(E.32)

Finally, using the steady state of the dynamic efficiency condition (B.12) into (E.32),
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and collecting terms in Ĉ∗t , Ẑ∗t , Ĉ∗t+1 and Ẑ∗t+1, it is easy to see that AA0 = 0:

AA0 = E0

∞∑
t=0

βtẼt
E

C

{
Ĉ∗t

[
MRS

(
1 + Γ

1− f
f

)
− β(1− ρ)

(
κθγ

ω
+

1− f
f

ΓMRS

)
+(1− α)E−α −MRS − κθγ

ω
−MRSΓ

1− f
f

+ β(1− ρ)

(
κθγ

ω
+

1− f
f

ΓMRS

)
−(1− α)E−α +

κθγ

ω

]
+ Ẑ∗t

[
−MRS

(
1 + Γ

1− f
f

)
+ β(1− ρ)

(
κθγ

ω
+

1− f
f

ΓMRS

)
+ [1− β(1− ρ)]

(
κθγ

ω
+

1− f
f

ΓMRS

)
− (1− α)E−α +MRS + (1− α)E−α − κθγ

ω

]
+Ĉ∗t+1

[
β(1− ρ)

(
κθγ

ω
+

1− f
f

ΓMRS

)
− β(1− ρ)ΓMRS

1− f
f

+ β(1− ρ)
κθγ

ω

]
+Ẑ∗t+1

[
−β(1− ρ)

(
κθγ

ω
+

1− f
f

ΓMRS

)
+ β(1− ρ)ΓMRS

1− f
f
− β(1− ρ)

κθγ

ω

]}
+ t.i.p. = 0.

(E.33)

Finally, recall that up to second order

∆t ≡
∫ 1

0

(
Pt(i)

Pt

)− α
1−α

di ' 1 +
1

2

ε

1− α
1− α + αε

1− α
V ari log(Pt(i)).

Then,

∆̃t '
1

2

ε

1− α
1− α + αε

1− α
V ari log(Pt(i)). (E.34)

From Woodford (2003) we know that

∞∑
t=0

βtV ari log(Pt(i)) =
∞∑
t=0

βt
δ

(1− δ)(1− βδ)
π̂2
t . (E.35)

So finally,
∞∑
t=0

βtδp∆̃t =
∞∑
t=0

βtδππ̂
2
t =

∞∑
t=0

βtδππ̃
2
t , (E.36)

where

δπ ≡ −
Y

C

ε

λ
. (E.37)

Therefore, a second-order approximation to the utility function simply yields

W ' U

1− β
+

1

2
E0

∞∑
t=0

βt
{
δEẼ

2
t + δθθ̃

2
t + δcC̃

2
t + δhh̃

2
t + δππ̃

2
t

}
+ t.i.p. (E.38)
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The result can be applied both to the exogenous and the endogenous participation
models. Given our calibration, we have δE = −0.2222, δθ = −0.0017, δc = −1,
δh = −1.2034 and δπ = −126.6473. Following the linear-quadratic approach, we can
compute the optimal monetary policy by maximizing (E.38) subject to a set of lin-
ear constraints defining the market equilibrium. In the next section we derive those
constraints for both versions of the model.

Appendix F. Linearized system of equations

In this section we derive a log-linear representation of both models as a system of
six equations in seven variables: π̃t, C̃t, r̃t, θ̃t, Ẽt, Ñt and h̃t. To close the system, an
equation defining monetary policy is needed.

Appendix F.1. Equation 1: Labor market tightness

When participation is endogenous, the law of motion of employment is given by

Et = (1− ρ)(1− ft)Et−1 + ftNt. (F.1)

A first-order approximation around the steady state yields

EÊt = (1− ρ)(1− f)EÊt−1 − (1− ρ)fEf̂t + fNf̂t + fNN̂t. (F.2)

Using the steady-state relation

E

N
=

f

1− (1− ρ)(1− f)
⇐⇒ f

N

E
− (1− ρ)f = ρ, (F.3)

and
f̂t = (1− γ)θ̂t, (F.4)

the law of motion can be written as

θ̂t =
1

ρ(1− γ)
Êt −

ρe
ρ(1− γ)

Êt−1 −
1− ρe
ρ(1− γ)

N̂t, (F.5)

where
ρe ≡ (1− ρ)(1− f). (F.6)

If participation is exogenous, N̂t = 0 and (F.5) simplifies to

θ̂t =
1

ρ(1− γ)
Êt −

ρe
ρ(1− γ)

Êt−1. (F.7)

In deviation from the efficient equilibrium we have

θ̃t =
1

ρ(1− γ)
Ẽt −

ρe
ρ(1− γ)

Ẽt−1 −
1− ρe
ρ(1− γ)

Ñt, (F.8)

if participation is endogenous, while

θ̃t =
1

ρ(1− γ)
Ẽt −

ρe
ρ(1− γ)

Ẽt−1, (F.9)

if participation is exogenous.
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Appendix F.2. Equation 2: Euler equation

A log-linear version of the Euler equation reads for both models as

Ĉt = Et{Ĉt+1} − r̂t + (1− ρz)Ẑt, (F.10)

where r̂t = R̂t − Et{π̂t+1} = −Et{Q̂t,t+1} and, in deviation from the efficient equilib-
rium, it becomes

C̃t = Et{C̃t+1} − r̃t. (F.11)

Appendix F.3. Equation 3: Home production

Using the law of motion of employment, we can rewrite the home-production func-
tion as follows:

ht =
[
Aht (1− Et − ΓUt)

]1−αh
=

[
Aht

(
1− Et − Γ

(
Et

1− ωθ1−γ
t

ωθ1−γ
t

− (1− ρ)
1− ωθ1−γ

t

ωθ1−γ
t

Et−1

))]1−αh

, (F.12)

and log-linearize it

ĥt = (1− αh)h
− 1

1−αh

[
−
(

1 + Γ
1− f
f

)
EÊt + (1− ρ)Γ

1− f
f

EÊt−1 + ρΓE
1− γ
f

θ̂t

+

(
1− E

(
1 + Γ

1− f
f

ρ

))
Âht

]
.

(F.13)

This equation applies to both models. In deviation from the efficient equilibrium we
have

h̃t = (1− αh)h
− 1

1−αh

[
−
(

1 + Γ
1− f
f

)
EẼt + (1− ρ)Γ

1− f
f

EẼt−1 + ρΓE
1− γ
f

θ̃t

]
.

(F.14)

Appendix F.4. Equation 4: Participation condition

Let

Ωt ≡
1− ft
ft

[MRSt − b] . (F.15)

Hence,

m̂rst = Ĉt +

(
ν − αh

1− αh

)
ĥt + Âht − Ẑt, (F.16)

Ω̂t = − 1

1− f
f̂t +

ΓMRS

ΓMRS − b
m̂rst. (F.17)
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Log-linearizing (A.2) and (A.21), we get

Ω̂t =
W

P

f

1− f
(ΓMRS − b)−1ŵt −

f

1− f
MRS

ΓMRS − b
m̂rst−

β(1− ρ)r̂t + β(1− ρ)Et

{
Ω̂t+1

}
,

(F.18)

W

P
ŵt = (1− Γ)Mm̂rst −

1− η
η

κ

q
q̂t −

1

η

κ

q
η̂t

+β(1− ρ)
1− η
η

κ

q
Et

{
(1− f)r̂t + ff̂t+1 +

1− f
1− η

η̂t+1 + (1− f)q̂t+1

}
.

(F.19)

After substituting (F.17) and (F.19) into (F.18), we obtain

ΓMRS

(ΓMRS − b)(1− f)
m̂rst = β(1− ρ)

(
(1− η)κ

ηq

1− f
Ω
− 1

)
r̂t

+ β(1− ρ)
Γ(1− f)

f

MRS

Ω
Et {m̂rst+1}

+
1

1− f

[
f̂t + β

1− ρ
Ω

κ

q

1− η
η

(1− f)fEt

{
f̂t+1

}
− β(1− ρ)Et

{
f̂t+1

}]
− 1

Ω

(1− η)κ

ηq
[q̂t − β(1− ρ)(1− f)Et {q̂t+1}]

− 1

Ω

κ

ηq
[η̂t − β(1− ρ)(1− f)Et {η̂t+1}] .

After using the relation between the finding rate, filling rate and tightness, and impos-
ing the Hosios condition, we can rewrite

ΓMRS

(ΓMRS − b)(1− f)
m̂rst = β(1− ρ)

(
γκ

(1− γ)q

1− f
Ω
− 1

)
r̂t

+ β(1− ρ)
Γ(1− f)

f

MRS

Ω
Et {m̂rst+1}+

[
γ2κ

(1− γ)qΩ
+

1− γ
1− f

]
θ̂t

−
[
γ2κ(1− f)

(1− γ)qΩ
+

1− γ
1− f

− γ f
Ω

κ

q

]
β(1− ρ)Et{θ̂t+1}

− 1

Ω

κ

(1− γ)q
[η̂t − β(1− ρ)(1− f)Et {η̂t+1}] .

(F.20)

At the steady state

Ω =
1− f
f

[ΓMRS − b] , (F.21)

Ω(1− β(1− ρ)) =
W

P
−MRS, (F.22)
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W

P
= b+ (1− Γ)MRS +

1− η
η

κθγ

ω
(1− β(1− ρ)(1− f)). (F.23)

Combine (F.21), (F.22), and (F.23). Since the Hosios condition holds, the market
equilibrium satisfies

γ

1− γ
=

Ω
1−f
κθγ

ω

, (F.24)

which can be rewritten as
γ

1− γ
κθ = ΓMRS − b. (F.25)

Define an efficiency wedge Φb, which is equal to zero if b = 0:

(1− Φb) ≡
ΓMRS

ΓMRS − b
. (F.26)

Hence,

ΓMRS =
γ

1− γ
κθ(1− Φb). (F.27)

The coefficients in (F.20) simplify to

ΓMRS

(ΓMRS − b)(1− f)
=

1− Φb

1− f
(F.28)

γκ

(1− γ)q

1− f
Ω
− 1 =

γκθ

1− γ
1

ΓMRS
− 1 = 0 (F.29)

Γ(1− f)

f

MRS

Ω
= 1− Φb (F.30)

[
γ2κ

(1− γ)qΩ
+

1− γ
1− f

]
=

1

1− f
(F.31)

[
γ2κ(1− f)

(1− γ)qΩ
+

1− γ
1− f

− γ f
Ω

κ

q

]
= 1 (F.32)

1

Ω

κ

ηq
=

1

γ(1− f)
. (F.33)

Therefore, (F.20) becomes

(1− Φb)m̂rst − θ̂t =β(1− ρ)(1− f)Et

{
(1− Φb)m̂rst+1 − θ̂t+1

}
− γ−1 [1− β(1− ρ)(1− f)ρη] η̂t.

(F.34)
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Iterating forward equation (F.34), one gets

(1− Φb)m̂rst − θ̂t = −γ−1 [1− β(1− ρ)(1− f)ρη]
∞∑
j=0

(β(1− ρ)(1− f))j Et{η̂t+j}

= −γ−1η̂t,

(F.35)

so that

(1− Φb)

[(
ν − αh

1− αh

)
ĥt + Ĉt + Âht − Ẑ

]
= θ̂t − γ−1η̂t. (F.36)

At an efficient equilibrium, it must be that(
ν − αh

1− αh

)
ĥ∗t + Ĉ∗t + Âht − Ẑ = θ̂∗t . (F.37)

Moreover, Φb = 0 implies that we can write(
ν − αh

1− αh

)
h̃t + C̃t = θ̃t − γ−1η̂t. (F.38)

This equation is specific to the model with endogenous participation. It is straight-
forward to see that, in the absence of bargaining shocks, (F.37) coincides with the
first-order approximation of the static efficiency condition (B.16) in the endogenous
participation model.

Appendix F.5. Equation 5: NKPC

We define the average real marginal cost as follows:

MCt ≡
P x
t X

α
t

Pt(1− α)
(F.39)

and the average markup as its inverse:

µt ≡MC−1
t , (F.40)

so that
µ̂t = −p̂xt − αx̂t, (F.41)

where p̂xt is the log-deviation of the relative price of the intermediate good. One can
write

P x
t

Pt
At = AtMCt(1− α)x−αt =

(1− α)At
µtXα

t

, (F.42)

and rearrange the job-creation condition

(1− α)At
µtXα

t

=
Wt

Pt
+
κ

qt
− (1− ρ)Et

{
Qt,t+1

κ

qt+1

}
. (F.43)
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The wage equation can be written as

Wt

Pt
= b+

φhνt (1− Γ)Ct
Zt

(1− αh)Aht h
− αh

1−αh
t + (F.44)

+
1− ηt
ηt

κ

qt
− Et

{
Qt,t+1(1− ρ)(1− ft+1)

1− ηt+1

ηt+1

κ

qt+1

}
.

We can now use (F.43) into (F.44) to eliminate the real wage and obtain

1

µt
=

Xα
t

(1− α)At
χt, (F.45)

where χt denotes the cost of hiring a worker, and form a match. It is related to the
markup in the final-good sector, and it is defined as

χt = b+
φhνt (1− Γ)Ct

Zt
(1− αh)Aht h

− αh
1−αh

t

+
κ

ηtqt
− (1− ρ)Et

{
Qt,t+1

κ

qt+1

1− ft+1(1− ηt+1)

ηt+1

}
.

(F.46)

The log-linear form of equation (F.45) reads as

−µ̂t = χ̂t −
[
(1− α)Ât − αÊt

]
, (F.47)

where the relation Xt = AtEt has been used to substitute for Xt. Log-linearizing the
expression for χt, we obtain

χχ̂t = A1γθ̂t − β(1− ρ)A1(γ − θq(1− η))Et{θ̂t+1}+ A1β(1− ρ)[1− θq(1− η)]r̂t

− A2η̂t + A3

(
ν − αh

1− αh

)
ĥt + A3(Ĉt + Âht − Ẑt),

(F.48)

where the following definitions apply:

A1 =
κ

ηq
, (F.49)

A2 = A1[1 + (1− ρ)β(1− θq)ρη], (F.50)

A3 =
φhν(1− Γ)C

Z
Ah(1− αh)h

− αh
1−αh , (F.51)

and where we used the fact that, up to first order, q̂t = −γθ̂t and f̂t = (1− γ)θ̂t.
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Appendix F.5.1. General version

We can rewrite the coefficients of the markup equation imposing the Hosios (but with-
out using steady-state relations)

γA1 = γ
κ

ηq
=

γκθ

f(1− γ)
, (F.52)

A1(γ − θq(1− η)) = A1γ(1− f) =
γκθ(1− f)

f(1− γ)
, (F.53)

A1(1− θq(1− η)) =
κθ(1− γf)

f(1− γ)
, (F.54)

A2 =
κθ

f(1− γ)
[1 + (1− ρ)β(1− f)ρη], (F.55)

A3 = (1− Γ)MRS. (F.56)

Therefore, for both the endogenous and the exogenous model we can write

χχ̂t =
γκθ

(1− γ)f

{
θ̂t − β(1− ρ)(1− f)Et{θ̂t+1}+ β(1− ρ)

(1− γf)

γ
r̂t

− [1 + (1− ρ)β(1− f)ρη]

γ
η̂t

}
+ (1− Γ)MRS

[(
ν − αh

1− αh

)
ĥt+

Ĉt + Âht − Ẑt
]
.

(F.57)

We can now use (F.47) and (F.57) to write the NKPC:

π̂t = βEt{π̂t+1}+ λm̂ct

= βEt{π̂t+1} − λµ̂t

= βEt{π̂t+1}+
λ

χ
χχ̂t − λ((1− α)Ât − αÊt)

= βEt{π̂t+1}+
λµEα

1− α
γκθ

(1− γ)f

{
θ̂t − β(1− ρ)(1− f)Et{θ̂t+1}+ β(1− ρ)

(1− γf)

γ
r̂t

− [1 + (1− ρ)β(1− f)ρη]

γ
η̂t

}
+
λµEα

1− α
(1− Γ)MRSM̂RSt − λ((1− α)Ât − αÊt).

(F.58)

When the steady state is efficient, we can write the NKPC in terms of efficiency gaps.
At an efficient equilibrium, (F.58) becomes

0 =
λEα

1− α
γκθ

(1− γ)f

{
θ̂∗t − β(1− ρ)(1− f)Et{θ̂∗t+1}+ β(1− ρ)

(1− γf)

γ
r̂∗t

}
+

λEα

1− α
(1− Γ)MRSM̂RS

∗
t − λ((1− α)Ât − αÊ∗t ),

(F.59)
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which coincides with the dynamic efficiency condition (B.19). Then, if we evaluate
(F.58) at the efficient steady state and we subtract (F.59), NKPC becomes

π̃t = βEt{π̃t+1}+
λEα

1− α
γκθ

(1− γ)f

{
θ̃t − β(1− ρ)(1− f)Et{θ̃t+1}+ β(1− ρ)

(1− γf)

γ
r̃t

− [1 + (1− ρ)β(1− f)ρη]

γ
η̂t

}
+

λEα

1− α
(1− Γ)MRSM̃RSt + λαẼt,

(F.60)

where

M̃RSt =

(
ν − αh

1− αh

)
h̃t + C̃t. (F.61)

Appendix F.5.2. Endogenous participation

For the model with endogenous participation, (F.60) can be further simplified using
the participation condition (F.38) and the steady-state efficiency conditions (B.13) and
(B.15):

π̃t = βEt{π̃t+1}+
λEαMRS

1− α

{[
1 + Γ

1− f
f

]
θ̃t − β(1− ρ)Γ

(1− f)

f
Et{θ̃t+1}

+β(1− ρ)Γ
(1− γf)

γf
r̃t −

[
Γ

γf
(1 + (1− ρ)β(1− f)ρη) +

1− Γ

γ

]
η̂t

}
+ λαẼt.

(F.62)

Appendix F.6. Equation 6: Resource constraint

For both models, the resource constraint is given by

Ct = ∆α−1
t (AtEt)

1−α − κ

ω
θγtEt + (1− ρ)

κ

ω
θγtEt−1. (F.63)

Log-linearizing it, we have

Ĉt =

[
(1− α)E−α − κθγ

ω

]
E

C
Êt − ργ

κθγ

ω

E

C
θ̂t + (1− ρ)

κθγ

ω

E

C
Êt−1+

(1− α)
E

C
E−αÂt,

(F.64)

and

C̃t =

[
(1− α)E−α − κθγ

ω

]
E

C
Ẽt − ργ

κθγ

ω

E

C
θ̃t + (1− ρ)

κθγ

ω

E

C
Ẽt−1. (F.65)
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Appendix G. Optimal monetary policy: the case of the efficient steady
state

Appendix G.1. Optimal policy without bargaining shocks

Assume that the steady state is efficient and there are no bargaining shocks. If
π̂t = 0 for all t, then NKPC (F.58) becomes

0 =
γκθ

(1− γ)f

{
θ̂t − β(1− ρ)(1− f)Et{θ̂t+1}+ β(1− ρ)

(1− γf)

γ
r̂t

}
+ (1− Γ)MRSM̂RSt − (1− α)2E−αÂt + α(1− α)E−αÊt,

(G.1)

which coincides with the dynamic efficiency condition (B.19). Moreover, as we pointed
out above, the participation condition implies the static efficiency condition. Therefore,
a zero-inflation policy implements the efficient allocation and it is thus optimal in both
models.

Appendix G.2. Optimal policy with bargaining shocks

If η̂t fluctuates, a cost-push shock arises: full inflation stabilization induces in-
efficient fluctuations in the cost of hiring new workers, χ̂t, which in turn generates
inefficient movements in labor market tightness. In fact, the dynamic efficiency condi-
tion is not satisfied. Rather, it has a residual that coincides with the cost-push term.
Therefore, the central bank will have to trade off inflation against tightness fluctua-
tions. In what follows, we compute the optimal monetary policy for this more general
case. We do so for both versions of the model so as to emphasize the role played by
the endogenous participation choice in the monetary policy design.

Appendix G.2.1. Endogenous participation

The monetary authority chooses {π̃t, C̃t, r̃t, θ̃t, Ẽt, Ñt, h̃t, M̃RSt}∞t=0 so as to maxi-
mize

1

2
E0

∞∑
t=0

βt
{
δEẼ

2
t + δθθ̃

2
t + δcC̃

2
t + δhh̃

2
t + δππ̃

2
t

}
(G.2)

subject to

• λ1,t

θ̃t =
1

ρ(1− γ)
Ẽt −

ρe
ρ(1− γ)

Ẽt−1 −
1− ρe
ρ(1− γ)

Ñt (G.3)

• λ2,t

C̃t = Et{C̃t+1} − r̃t (G.4)
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• λ3,t

π̃t = βEt{π̃t+1}+
λEα

1− α
γκθ

(1− γ)f

{
θ̃t − β(1− ρ)(1− f)Et{θ̃t+1}+

β(1− ρ)
(1− γf)

γ
r̃t −

[1 + (1− ρ)β(1− f)ρη]

γ
η̂t

}
+

λEα

1− α
(1− Γ)MRSM̃RSt + λαẼt

(G.5)

• λ4,t

h̃t = (1− αh)h
− 1

1−αh

[
−
(

1 + Γ
1− f
f

)
EẼt + (1− ρ)Γ

1− f
f

EẼt−1

+ρΓE
1− γ
f

θ̃t

] (G.6)

• λ5,t

C̃t =

[
(1− α)E−α − κθγ

ω

]
E

C
Ẽt − ργ

κθγ

ω

E

C
θ̃t + (1− ρ)

κθγ

ω

E

C
Ẽt−1 (G.7)

• λ6,t

M̃RSt =

(
ν − αh

1− αh

)
h̃t + C̃t (G.8)

• λ7,t

M̃RSt = θ̃t − γ−1η̂t (G.9)

FOC:

• π̃t:
δππ̃t + λ3,t−1 − λ3,t = 0 (G.10)

• C̃t:
δCC̃t +

λ2,t−1

β
− λ2,t − λ5,t + λ6,t = 0 (G.11)

• r̃t:
−λ2,t + β(1− ρ)

λEα

1− α
κθ(1− γf)

(1− γ)f
λ3,t = 0 (G.12)

• θ̃t:

δθθ̃t − λ1,t +
λEα

1− α
γκθ

(1− γ)f
[λ3,t − (1− ρ)(1− f)λ3,t−1] +

+ (1− αh)h
− 1

1−αh ρΓE
1− γ
f

λ4,t − ργ
κθγ

ω

E

C
λ5,t + λ7,t = 0

(G.13)
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• Ẽt:

δEẼt +
1

ρ(1− γ)
λ1,t −

βρe
ρ(1− γ)

Et{λ1,t+1}+ λαλ3,t−

(1− αh)h
− 1

1−αh

(
1 + Γ

1− f
f

)
Eλ4,t+

+ β(1− αh)h
− 1

1−αh (1− ρ)Γ
1− f
f

EEt{λ4,t+1}+

[
(1− α)E−α − κθγ

ω

]
E

C
λ5,t+

+ β(1− ρ)
κθγ

ω

E

C
Et{λ5,t+1} = 0

(G.14)

• h̃t:
δhh̃t − λ4,t +

(
ν − αh

1− αh

)
λ6,t = 0 (G.15)

• M̃RSt:
λEα

1− α
(1− Γ)MRSλ3,t − λ6,t − λ7,t = 0 (G.16)

• Ñt:
λ1,t = 0 (G.17)

Appendix G.2.2. Exogenous participation

The monetary authority chooses {π̃t, C̃t, r̃t, θ̃t, Ẽt, h̃t, M̃RSt}∞t=0 so as to maximize

1

2
E0

∞∑
t=0

βt
{
δEẼ

2
t + δθθ̃

2
t + δcC̃

2
t + δhh̃

2
t + δππ̃

2
t

}
(G.18)

subject to

• λ1,t

θ̃t =
1

ρ(1− γ)
Ẽt −

ρe
ρ(1− γ)

Ẽt−1 (G.19)

• λ2,t

C̃t = Et{C̃t+1} − r̃t (G.20)

• λ3,t

π̃t = βEt{π̃t+1}+
λEα

1− α
γκθ

(1− γ)f

{
θ̃t − β(1− ρ)(1− f)Et{θ̃t+1}+

β(1− ρ)
(1− γf)

γ
r̃t −

[1 + (1− ρ)β(1− f)ρη]

γ
η̂t

}
+

λEα

1− α
(1− Γ)MRSM̃RSt + λαẼt

(G.21)
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• λ4,t

h̃t = (1− αh)h
− 1

1−αh

[
−
(

1 + Γ
1− f
f

)
EẼt + (1− ρ)Γ

1− f
f

EẼt−1+

ρΓE
1− γ
f

θ̃t

] (G.22)

• λ5,t

C̃t =

[
(1− α)E−α − κθγ

ω

]
E

C
Ẽt − ργ

κθγ

ω

E

C
θ̃t + (1− ρ)

κθγ

ω

E

C
Ẽt−1 (G.23)

• λ6,t

M̃RSt =

(
ν − αh

1− αh

)
h̃t + C̃t (G.24)

The FOCs of the model with exogenous participation coincide with (G.10)-(G.16) after
imposing λ7,t = 0:

• π̃t:
δππ̃t + λ3,t−1 − λ3,t = 0 (G.25)

• C̃t:
δCC̃t +

λ2,t−1

β
− λ2,t − λ5,t + λ6,t = 0 (G.26)

• r̃t:
−λ2,t + β(1− ρ)

λEα

1− α
κθ(1− γf)

(1− γ)f
λ3,t = 0 (G.27)

• θ̃t:

δθθ̃t − λ1,t +
λEα

1− α
γκθ

(1− γ)f
[λ3,t − (1− ρ)(1− f)λ3,t−1] +

+ (1− αh)h
− 1

1−αh ρΓE
1− γ
f

λ4,t − ργ
κθγ

ω

E

C
λ5,t = 0

(G.28)

• Ẽt:

δEẼt +
1

ρ(1− γ)
λ1,t −

βρe
ρ(1− γ)

Et{λ1,t+1}+ λαλ3,t−

(1− αh)h
− 1

1−αh

(
1 + Γ

1− f
f

)
Eλ4,t+

+ β(1− αh)h
− 1

1−αh (1− ρ)Γ
1− f
f

EEt{λ4,t+1}+

[
(1− α)E−α − κθγ

ω

]
E

C
λ5,t+

+ β(1− ρ)
κθγ

ω

E

C
Et{λ5,t+1} = 0

(G.29)
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• h̃t:
δhh̃t − λ4,t +

(
ν − αh

1− αh

)
λ6,t = 0 (G.30)

• M̃RSt:
λEα

1− α
(1− Γ)MRSλ3,t − λ6,t = 0 (G.31)

Appendix G.2.3. The near-optimality of strict inflation targeting

Let the superscript A indicate the optimal policy and the superscript B indicate a
policy of strict inflation targeting. Define Λ as the fraction of consumption that the
household would have to give up to be as well off under regime A as under regime B.
Denote by WA and WB the utility associated with the respective policies evaluated
according to (E.38). One can show that

Λ = 1− e(1−β)(WB−WA), (G.32)

where Λ measures the cost of switching from policy A to policy B. We compute the cost
of a strict target on inflation relative to the optimal policy and we find that, in both
models, it is never larger than 10−3 percentage points of steady-state consumption. We
conclude that strict inflation targeting is nearly optimal under bargaining shocks.

Appendix H. Optimal monetary policy: the case of a distorted steady state

When calibrating the model to U.S. data, the unemployment benefit is chosen such
that b/w = 0.4 and the final-good sector charges a steady-state markup of 20%, which
is not corrected for by an appropriate production subsidy. Therefore, steady-state
efficiency conditions are violated. We can no longer use (E.38) to approximate welfare.
For this more general case, we follow a conventional second-order perturbation method.
For the sake of clarity, we list below all equations defining the competitive equilibrium
in both models.

Appendix H.1. Non-linear system - Endogenous model

• Law of motion of employment

Et = (1− ρ)(1− ft)Et−1 + ftNt (H.1)

• Job-filling rate
qt = ωθ−γt (H.2)

• Job-finding rate
ft = θtqt (H.3)
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• Home-production technology

ht =
[
Aht (1− Et − ΓUt)

]1−αh (H.4)

• Definition of participation
Nt = Et + Ut (H.5)

• Euler equation

βRtEt

{
Ct
Ct+1

Zt+1

Zt

1

πt+1

}
= 1 (H.6)

• Participation condition

1− ft
ft

(ΓMRSt − b) =
Wt

Pt
−MRSt+

βEt

{
Ct
Ct+1

Zt+1

Zt

(1− ρ)(1− ft+1)

ft+1

(ΓMRSt+1 − b)
} (H.7)

• Definition of marginal rate of substitution

MRSt = φ(1− αh)
AhtCth

ν− αh
1−αh

t

Zt
(H.8)

• Job-creation condition

κ

qt
=
PX
t

Pt
At −

Wt

Pt
+ (1− ρ)Et

{
β
Ct
Ct+1

Zt+1

Zt

κ

qt+1

}
(H.9)

• Real wage

Wt

Pt
= (1− ηt)

P x
t

Pt
At + ηt [b+ (1− Γ)MRSt] +

(1− ηt)(1− ρ)Et

{
β
Ct
Ct+1

Zt+1

Zt
κθt+1

} (H.10)

• Market clearing
Yt = Ct + κVt (H.11)

• Final-good sector production function

Yt = (AtEt)
1−α∆α−1

t (H.12)

• Evolution of price dispersion

∆t = (1− δ)
(
P̄t
Pt

)− ε
1−α

+ δπ
ε

1−α
t ∆t−1 (H.13)
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• Price index

P̄t
Pt

=

(
1− δπε−1

t

1− δ

) 1
1−ε

(H.14)

• Optimal pricing equation
P̄t
Pt

=
Kt

Ft
(H.15)

• Recursive formulation for Kt

Kt =
Yt
Ct
µRMCt + βδEt

{
πεt+1

Zt+1

Zt
Kt+1

}
(H.16)

• Recursive formulation for Ft

Ft =
Yt
Ct

+ βδEt

{
πε−1
t+1

Zt+1

Zt
Ft+1

}
(H.17)

• Definition of real marginal cost

RMCt =
1

1− α
P x
t

Pt

(
P̄t
Pt

)−ε α
1−α

(Ct + κVt) (H.18)

• Monetary policy rule

log(Rt) = − log(β) + φπ log(πt) + φy log

(
Yt
Y

)
− φu

(
log

(
Ut
Nt

)
− log

(
U

N

))
(H.19)

• Definition of market tightness

θt =
Vt
St

(H.20)

• Definition of searching workers

St = Nt − (1− ρ)Et−1 (H.21)

Appendix H.2. Non-linear system - Exogenous model

• Law of motion of employment

Et = (1− ρ)(1− ft)Et−1 + ftN (H.22)

• Job-filling rate
qt = ωθ−γt (H.23)
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• Job-finding rate
ft = θtqt (H.24)

• Home-production technology

ht =
[
Aht (1− Et − ΓUt)

]1−αh (H.25)

• Definition of participation
N = Et + Ut (H.26)

• Euler equation

βRtEt

{
Ct
Ct+1

Zt+1

Zt

1

πt+1

}
= 1 (H.27)

• Definition of marginal rate of substitution

MRSt = φ(1− αh)
AhtCth

ν− αh
1−αh

t

Zt
(H.28)

• Job-creation condition

κ

qt
=
PX
t

Pt
At −

Wt

Pt
+ (1− ρ)Et

{
β
Ct
Ct+1

Zt+1

Zt

κ

qt+1

}
(H.29)

• Real wage

Wt

Pt
= (1− ηt)

P x
t

Pt
At + ηt [b+ (1− Γ)MRSt] +

(1− ηt)(1− ρ)Et

{
β
Ct
Ct+1

Zt+1

Zt
κθt+1

} (H.30)

• Market clearing
Yt = Ct + κVt (H.31)

• Final-good sector production function

Yt = (AtEt)
1−α∆α−1

t (H.32)

• Evolution of price dispersion

∆t = (1− δ)
(
P̄t
Pt

)− ε
1−α

+ δπ
ε

1−α
t ∆t−1 (H.33)
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• Price index

P̄t
Pt

=

(
1− δπε−1

t

1− δ

) 1
1−ε

(H.34)

• Optimal pricing equation
P̄t
Pt

=
Kt

Ft
(H.35)

• Recursive formulation for Kt

Kt =
Yt
Ct
µRMCt + βδEt

{
πεt+1

Zt+1

Zt
Kt+1

}
(H.36)

• Recursive formulation for Ft

Ft =
Yt
Ct

+ βδEt

{
πε−1
t+1

Zt+1

Zt
Ft+1

}
(H.37)

• Definition of real marginal cost

RMCt =
1

1− α
P x
t

Pt

(
P̄t
Pt

)−ε α
1−α

(Ct + κVt) (H.38)

• Monetary policy rule

log(Rt) = − log(β) + φπ log(πt) + φy log

(
Yt
Y

)
− φu (log (Ut)− log(U)) (H.39)

• Definition of market tightness

θt =
Vt
St

(H.40)

• Definition of searching workers

St = N − (1− ρ)Et−1 (H.41)

Appendix H.3. Welfare losses

Let the superscript A indicate a policy of strict inflation targeting, while the su-
perscript B indicates an alternative policy. Let Λ be the fraction of consumption that
the household would have to give up to be as well off under regime A as under regime
B, i.e., let Λ be such that

E0

∞∑
t=0

βt
[
Zt log((1− Λ)CA

t ) + φ
(hAt )1+ν

1 + ν

]
= E0

∞∑
t=0

βt
[
Zt log(CB

t ) + φ
(hBt )1+ν

1 + ν

]
.

(H.42)

54



We compute the expected welfare conditional on being at the non-stochastic steady
state (which is the same across all monetary policy regimes) at time 0. Therefore,
Λ measures the welfare cost in terms of steady-state consumption of switching from
regime A to regime B. Let

W i
0 ≡ E0

∞∑
t=0

βt
[
Zt log(Ci

t) + φ
(hit)

1+ν

1 + ν

]
, (H.43)

for i ∈ A,B. Then,

E0

∞∑
t=0

βtZt log(1− Λ) +WA
0 = WB

0 . (H.44)

If there are no preference shocks, Zt = 0 ∀t, and

Λ = 1− e(1−β)(WB
0 −WA

0 ). (H.45)

In the more general case instead,

Λ = 1− e(1−βρZ)(WB
0 −WA

0 ). (H.46)

Table I.1 reports the values of Λ. The cost of implementing a simple rule (R2 or R3)
instead of adopting strict inflation targeting (R1) ranges from a minimum of 0.12 to a
maximum of 1.73.

Appendix I. Consumption of home appliances

In the model, we allow for a positive correlation between innovations to home and
market technology, denoted by ρξ. Some types of technology might indeed be relevant
for both the home and the market sector, for example in the case of Internet-related
innovations. Also, since in the model we abstract from capital accumulation for the
sake of simplicity, we see this as a reduced way of capturing the fact that the quantity or
the quality of home capital goods might covary with market productivity. In support of
this hypothesis, we use the data set from Boivin et al. (2009) to obtain the “Quantities
of major household appliances from personal consumption expenditure (Q1FNR10),”
compute the correlation between this variable and the real GDP over the period 1976Q1
- 2004Q4, and find it to be 0.81.
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Table I.1: Unconditional moments and welfare losses. We compare standard deviations (relative to
output) of selected variables in the endogenous and exogenous participation models under three rules.
Volatilities are expressed in percentage standard deviations. We also report welfare losses (in terms
of steady-state consumption) of deviating from strict inflation targeting (R1) and adopting one of
the two alternative rules. R2: φπ = 1.5 and φy = φu = 0. R3: φπ = 1.5, φy = 0 and φu = 0.5/4.
Stochastic processes are calibrated as in section 4.3.

Endogenous Exogenous

R1 R2 R3 R1 R2 R3

Output (%) 1.46 1.43 1.26 1.69 1.56 1.21
Unemployment rate 6.55 7.36 1.50 8.77 7.55 2.77

Employment 0.48 0.67 0.49 0.55 0.47 0.17
Participation rate 0.40 0.24 0.41 0 0 0

Welfare losses 1.7335 0.1228 0.3018 1.2101
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