Forecasting Canadian GDP Evaluating Point and Density Forecasts in Real-Time

Frédérick Demers

Research Department Bank of Canada

Bank of Canada Workshop
Forecasting Short-term Economic Development and the Role of
Econometric Models
October 25 and 26, 2007

Outline

- Motivation, Data, and Notation
- Forecasting Models and Set-Up of Experiment
- Forecast Evaluation
- Conclusion

Part I

Motivation, Data, and Notation

Motivation (what this paper does)

- Evaluate point and density forecasts in real time
- Compare linear and nonlinear univariate models
 - Clements and Krolzig (1998): Nonlinear models fit US GDP well in-sample, but don't forecast that well out of sample
 - Clements and Smith (2002): Nonlinear models provide better density forecasts

Motivation (what this paper does)

- Can we robustify linear models by using less time-information?
 - We know it works well for point forecasts
 - Does it work for density forecasts?
- Compare various forecasting strategies (time-information, or limited-memory estimators)
- Real-time vs. revised data

Motivation (what this paper doesn't do)

- Account for parameter uncertainty in analytic expressions
 - Hansen (2006) and Wu (2006)
- Multivariate models, e.g.:
 - Output and unemployment: Clements and Smith (2000)
 - Output and inflation
 - Money and inflation see Shaun's paper
- Relax the Gaussianity assumption for marginal distributions
 - Few conclusive examples for GDP
 - Yet, some predictive densities will not be Gaussian
- No quantile estimation

Why Investigate Interval/Density Forecasts?

- Natural generalization of point (conditional-mean) forecasts
- Common in finance (VaR) or weather forecasting
- But most macroeconomic forecasts are reported as point
 - ...seems odd when econometrics is about inference
- Notable exceptions:
 - Fan Charts from Bank of England and Riksbank
 - Increasing number of statements about recession probability
 - Survey of Professional Forecasters

Why Investigate Interval/Density Forecasts?

- Point forecasts provide little information about the likelihood of the possible outcomes
- While discussing risks without the associated likelihood is not very informative
 - Ask your insurance broker...

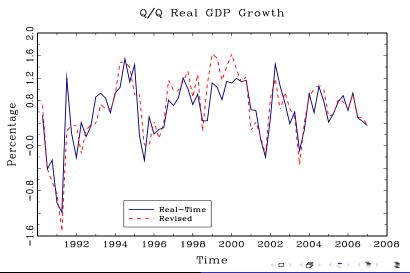
Some Useful Literature

- Introduction of principles to economics: Dawid (1984)
- Predicting recessions: Kling (1987) and Zellner, Hong, and Min (1991)
- Review: Tay and Wallis (2000)
- Applications: Clements (2004), Galbraith and van Norden (2007)
- Comprehensive review: Corradi and Swanson (2005)

Data Set

- Real GDP at market prices, seasonally adjusted
- Sample: 1961Q1 2006Q4
- Forecast Period: 1990Q1 2006Q4
- Real-time vintages of GDP are used
- results based on real-time data compared with those based revised data

Initial vs. Final Estimates of Quarterly Real GDP Growth



999

Notation

- Let Y_t denote the log of real GDP times 100 with t = 1, ..., T
- And $y_{t+h} = Y_{t+h} Y_t$ denotes h-step ahead change of Y_t with h = 1, ..., H
- The usual first difference will be $y_t = Y_t Y_{t-1}$
- Finally

$$y_{t+h} \equiv \hat{y}_{t+h} + \hat{\varepsilon}_{t+h}$$

Part II

Forecasting Models and Set-Up of Experiment

Benchmark Linear Models

• Unconditional:

$$\mathit{UNC} = S^{-1} \sum_{j=t-S+1}^{t} (Y_j - Y_{j-h})$$
 $arepsilon_{t+h} \sim \mathit{N}(0, \sigma_arepsilon^2)$

where S is a sample-size of interest

AR(p):

$$y_{t+1} = \alpha + \phi(L)y_t + \varepsilon_{t+1}$$

$$\phi(L) = \phi_1 L - \dots - \phi_p L^p$$

$$\varepsilon_t \sim i.i.d.N(0, \sigma_{\varepsilon}^2)$$

Smooth-Transition Switching AR Models

Exponential smooth transition AR, ESTAR

$$y_{t+1} = \alpha_1 + \phi_1(L)y_t + \omega_t(\alpha_2 + \phi_2(L)y_t) + \varepsilon_{t+1}$$

$$\omega_t = 1 - \exp(-\gamma(y_{t-d} - \mu)^2)$$

Logistic smooth transition AR, LSTAR:

$$y_{t+1} = \alpha_1 + \phi_1(L)y_t + \omega_t (\alpha_2 + \phi_2(L)y_t) + \varepsilon_{t+1}$$

$$\omega_t = \frac{1}{1 + \exp(-\gamma(y_{t-d} - \mu))}$$

- Where
 - $\varepsilon_t \sim i.i.d.N(0, \sigma_{\varepsilon}^2)$
 - d is a delay parameter with $p \ge d \ge 0$
 - $\gamma(>0)$ determines the shape of transition function, ω_t

Markov-Switching AR Models

• The intercept switching AR, MSI:

$$y_{t+1} = \alpha_{s_t} + \phi(L)y_t + \varepsilon_{t+1}$$

The intercept switching and AR-coefficient switching, MSIAR:

$$y_{t+1} = \alpha_{s_t} + \phi_{s_t}(L)y_t + \varepsilon_{t+1}$$

Processes are homoscedastic:

$$\varepsilon_t \sim i.i.d.N(0, \sigma_{\varepsilon}^2)$$

Markov-Switching AR Models with Heteroscedasticity

MS models with state-dependent variance are also examined

$$\varepsilon_t \sim i.i.d.N(0, \sigma_{s_t}^2)$$

MSIH and MSIHAR

Nonlinear Models and Forecast Distribution

- Forecast distribution can depart from normality
 - Will generate excess skewness asymmetric risks
 - Will generate excess kurtosis recession/boom
- Although the marginal distributions are normal

Linear and Nonlinear Univariate Forecasting Models

- Unconditional forecast
- AR
- ESTAR
- LSTAR
- MSI, MSIH
- MSIAR, MSIHAR

Rolling vs. Expanding Schemes

- Expanding window:
 - Add an observation to the sample at each iteration
- Rolling window:
 - Roll the sample forward at each iteration: S = EXP
 - Various sample sizes are compared: S = 30, 40, 50, 60, 70, 80
 - The so-called *limited-memory* estimator
- The rolling approach is advantageous if uncertain about homogeneity of DGP (Giacomini and White, 2006; Clark and McCracken, 2004)

Lag Selection

- For the AR model, lags are selected by AIC at each period
 - The maximum lag is 4
- For the ESTAR, LSTAR, and MS models, a single lag is used
 - Computationally cumbersome otherwise
 - No insanity filter
 - But a few conditional statements about numerical convergence

Forecasting *h*-step Ahead

- Values for y_{t+h} are obtained by recursion (or iteration)
 - i.e., the *iterated* forecast method, not the *direct*
- Analytic expressions can be used for the AR and MS models
- Stochastic simulations are necessary for smooth-transition models when h>1

h-Step Forecasts with Smooth-Transition Models

- ullet Need to draw pseudo-random value for $arepsilon_t$
- Easy to do when we draw from Gaussian
 - Or when we bootstrap
- I choose to draw from the Gaussian to emphasize on model specification
 - 1000 replications
 - Each point and density forecast is the average over the simulated values (when h > 1)

Interval/Density Forecasting with AR Models

- Estimate parameters (intercept and AR parameters)
- Obtain an estimate of $\sigma^2 = E(\varepsilon_t^2)$

Density Forecasting with AR(p) Models

- Because the underlying process, Y_t , is I(1), the h-step forecast-error variance, denoted as $\hat{\Omega}_h$, depends on σ^2 , σ^2_h , and h
- But we estimate models based upon h=1, so σ_h^2 and $\hat{\Omega}_h$ must be derived for h>1
- Recall that for a stationary AR(1) process the h-step variance is

$$\sigma_h^2 = \sigma^2 \frac{1 - \phi^{2h}}{1 - \phi^2}$$

Density Forecasting with AR(p) Models

- The h-step error, $\varepsilon_{t+h} = Y_{t+h} Y_t$, is a cumulative process
 - N.B. ε_{t+h} is (at most) a MA(h-1) process
- Hence $\hat{\Omega}_h$ increases at rate O(h), in contrast to O(1) when the underlying process is I(0)
- $\hat{\Omega}_h$ can be approximated by

$$h\hat{\sigma}_h^2(1+h/T)$$

Density Forecasting with Switching Models

- \bullet Density forecasts are constructed the same as linear models when $\sigma=\sigma_t$
- The p.d.f. of ε_{t+h} is normal although the p.d.f. of y_{t+h} is not
- When $\sigma \neq \sigma_t$, the forecast-error distribution will vary over time
 - And will not be normal at each t due to the mixture process

Part III

Forecast Evaluation

Evaluating Point Forecasts

- Compute the bias
- Variance
- Mean Squared Error (MSE)

$$MSE = \varepsilon'_{t+h} \varepsilon_{t+h} / (P - h)$$

Evaluating Density Forecasts: Some Background

The idea:

- Determine whether a predicted density function is identical to some distribution of interest
- A forecasting model is judged as good or bad based on the probabilities it predicts (Dawid, 1984)
 - Model don't need to agree with economic theory
- Are the probabilities well calibrated?

Evaluating Density Forecasts: Overview

- g
- Let \mathbb{F}_{t+h} denote the empirical distribution function of the process \hat{y}_{t+h}
- We want to know whether the realizations $\{y_{t+h}\}_{t=1}^S$ are drawn from \mathbb{F}_{t+h}
- Can consider the probability integral transform (p.i.t.):

$$z_{t+h} = \int_{-\infty}^{y_{t+h}} F(u) du,$$

where F_t is the (unobserved) density governing the process

- Or, the probability of observing values no greater than the realizations
- Densities need not be constant over time

Evaluating Density Forecasts: Testing Strategies

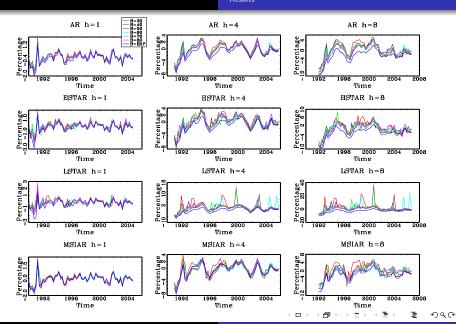
• When the predicted density, \mathbb{F}_{t+h} , correspond to the underlying density, F_{t+h} , then

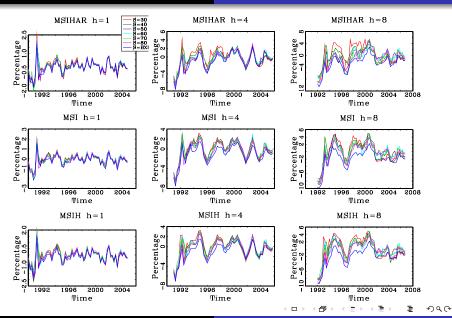
$$z_{t+h} \sim i.i.d.U[0,1]$$

- Which means testing that $\mathbb{F} F = 0$
- Or that z_{t+h} departs from the 45° line
- N.B. when h > 1, the i.i.d. assumption will in general be invalid
 - Inference?

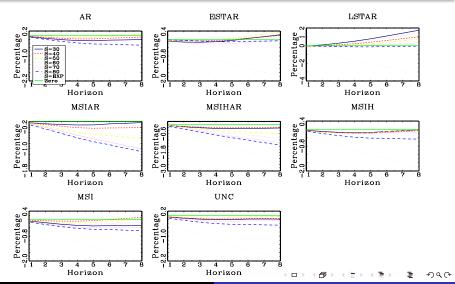
Evaluating Density Forecasts: Testing Strategies

- Can be done using Kolmogorov-Smirnov or Cramer-von-Mises GoF
- Alternative strategy: take the inverse normal CDF transformation of z_t , z_t^* , and use normality tests on z_t^* (Berkowitz, 2001)

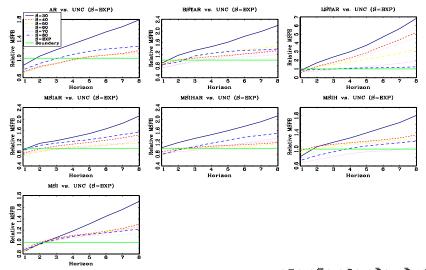




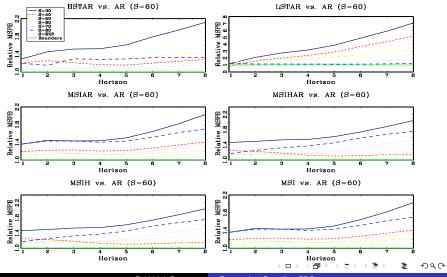
Using More Time-Information Leads to Biased Predictions



Variance Ratios: Limited Information at Long Horizons



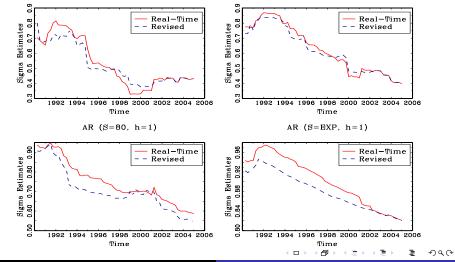
Relative MSEs: Bias Makes a Big Difference



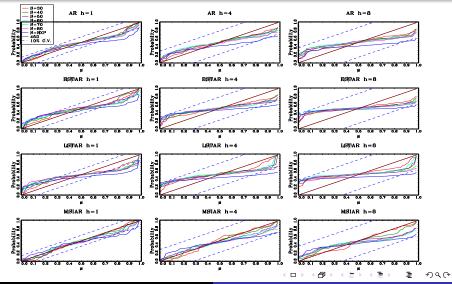
AR (S=50, h=1)

Real-time vs. Revised Estimates of Ω_1 for AR

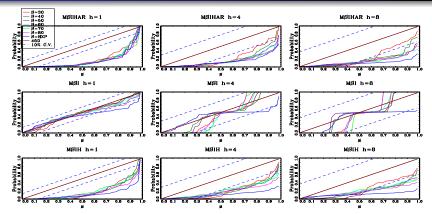
AR (S=30, h=1)



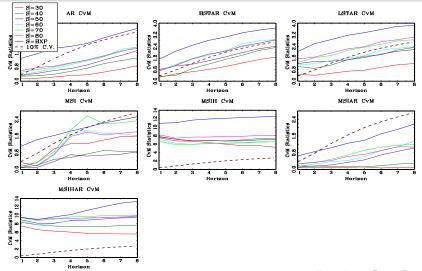
Empirical Cumulative Density Function of z_{t+h}



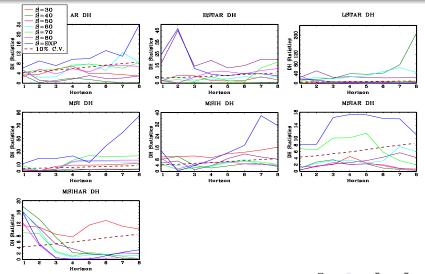
Empirical Cumulative Density Function of z_{t+h}



Cramer-von-Mises Test Results



Doornick-Hansen Normality Test Results



Part IV

Conclusion

Limited Information Content for all Models

- We can't predict too far out!
- Too much time information tends to lead to biased forecasts
 - And bias can be large
 - MSE or Variance ratio?
- Possible to robustify linear model point and density forecasts against structural changes
- Nonlinearities do matter for point and density forecasts

With Revised Data?

- Smaller S forecast better with revised data for short horizons
- Information content (Galbraith and Tkacz, 2007) looks better with revised data
 - More models are informative at long horizons
- Uncertainty looks smaller with real-time data (in absolute terms)
- Nonlinear look worse (higher MSE) with revised data

Thank You!

