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Abstract 

In this paper, we show that in a model where investors have heterogeneous preferences, 
the expected return of risky assets depends on the idiosyncratic coskewness beta, which 
measures the co-movement of the individual stock variance and the market return. We 
find that there is a negative (positive) relation between idiosyncratic coskewness and 
equity returns when idiosyncratic coskewness betas are positive (negative). Standard risk 
factors, such as the market, size, book-to-market, and momentum cannot explain the 
findings. We construct two idiosyncratic coskewness factors to capture the market-wide 
effect of idiosyncratic coskewness. The two idiosyncratic coskewness factors can also 
explain the negative and significant relation between the maximum daily return over the 
past one month (MAX) and expected stock returns documented in Bali, Cakici, and 
Whitelaw (2009). In addition, when we control for these two idiosyncratic coskewness 
factors, the return difference for distress-sorted portfolios found in Campbell, Hilscher, 
and Szilagyi (2008) becomes insignificant. Furthermore, the two idiosyncratic 
coskewness factors help us understand the idiosyncratic volatility puzzle found in Ang, 
Hodrick, Xing, and Zhang (2006). They reduce the return difference between portfolios 
with the smallest and largest idiosyncratic volatility by more than 60%, although the 
difference is still statistically significant. 

JEL classification: G11, G12, G14, G33 
Bank classification: Economic models; Financial markets 

Résumé 

Les auteurs montrent, en modélisant des investisseurs aux préférences hétérogènes, que le 
rendement espéré d’actifs risqués dépend du coefficient bêta de coasymétrie 
idiosyncrasique, qui mesure l’évolution conjointe du rendement boursier et de la variance 
de chaque action. Ils observent une relation négative (positive) entre la coasymétrie 
idiosyncrasique et les rendements des actions lorsque le coefficient bêta de coasymétrie 
est positif (négatif). Les facteurs de risque usuels, comme le marché, le volume, le ratio 
valeur comptable-valeur de marché ou le momentum, ne permettent pas d’expliquer ce 
résultat. Les auteurs élaborent deux facteurs pour représenter l’incidence de la 
coasymétrie idiosyncrasique sur l’ensemble du marché. Ces facteurs permettent aussi 
d’expliquer la relation négative significative qui lie le rendement quotidien maximal 
enregistré pendant le mois écoulé et les rendements boursiers espérés et dont font état 
Bali, Cakici et Whitelaw (2009). Une fois ces facteurs idiosyncrasiques pris en compte, 
l’écart de rendement entre les portefeuilles de Campbell, Hilscher et Szilagyi (2008), 
constitués après un tri des sociétés émettrices en fonction de leur probabilité de défaut, 
cesse d’être significatif. Qui plus est, ces deux facteurs aident à percer l’énigme posée par 
la volatilité idiosyncrasique chez Ang, Hodrick, Xing et Zhang (2006). Leur inclusion 
réduit en effet de plus de 60 % l’écart de rendement entre les portefeuilles présentant les 
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niveaux de volatilité idiosyncrasique minimal et maximal; ce dernier demeure toutefois 
statistiquement significatif. 

Classification JEL : G11, G12, G14, G33 
Classification de la Banque : Modèles économiques; Marchés financiers 

 

 



1 Introduction

The single factor capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965)

has been empirically tested and rejected by numerous studies, which show that the cross-

sectional variation in expected equity returns cannot be explained by the market beta alone.

One possible extension is to assume that investors care about not only the mean and variance

of their portfolios, but the skewness of their portfolio as well. Harvey and Siddique (2000)

propose an asset pricing model where skewness is priced. In their model, the expected equity

return depends on the market beta and the coskewness beta, which measures the covariance

between an individual equity return and the square of the market return. Mitton and Vorkink

(2008) introduce a model where investors’ preference for the mean and variance is the same

but the preference for skewness is heterogeneous. In their model, the idiosyncratic skewness

is priced. They also show that their model can explain why many investors do not hold

well-diversified portfolios.

We relax certain restrictions in the Mitton and Vorkink (2008) model in this paper. We

show that in a model with heterogeneous preference for skewness, the expected return on

risky assets depends on the market beta, the coskewness beta (as in Harvey and Siddique

(2000)), the idiosyncratic skewness (as in Mitton and Vorkink (2008)), and the idiosyncratic

coskewness beta, which measures the covariance between idiosyncratic variance and the

market return.

We show empirically that when estimated idiosyncratic coskewness betas are positive,

there is a negative relationship between excess returns and idiosyncratic coskewness betas.

When estimated idiosyncratic coskewness betas are negative, the relationship becomes pos-

itive. In addition, when we control for risk using the market factor, the Fama-French three

factors, and the Carhart four factors, the relationship between excess returns and idiosyn-

cratic coskewness betas becomes stronger. In other words, the standard risk factors cannot

explain why portfolios with low idiosyncratic coskewness betas earn high excess returns

when idiosyncratic coskewness betas are positive, and why portfolios with high idiosyncratic
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coskewness betas earn high excess returns when idiosyncratic coskewness betas are negative.

We form two long-short portfolios, which are long the portfolio with the lowest idiosyncratic

coskewness beta and short the portfolio with the highest idiosyncratic coskewness beta for

both groups with positive and negative idiosyncratic coskewness betas, to capture the sys-

tematic variation in excess portfolio returns sorted by idiosyncratic coskewness betas. We

call them idiosyncratic coskewness factors, ICSK1 for the groups with positive idiosyncratic

coskewness betas, and ICSK2 for the groups with negative idiosyncratic coskewness betas.

The average monthly excess returns for ICSK1 and ICSK2 over the sample period January

1971 to December 2006 are 0.81% (t = 1.87) and -0.63% (t = 2.00) respectively.

In addition, we find that the idiosyncratic coskewness factors can help explain three

anomalous findings in equity market. First, we show that the two idiosyncratic coskewness

factors explain the anomalous finding that stocks with the maximum daily return over the

past month (MAX) earn low expected returns. Bali, Cakici, and Whitelaw (2009) document

a negative and significant relation between the maximum daily return over the past month

and expected stock returns. We show that the average raw and risk-adjusted return differ-

ences between stocks in the lowest and highest MAX deciles is about 0.93% (t = 2.51) per

month. When we regress value-weighted (MAX) portfolios returns on the two idiosyncratic

coskewness factors ICSK1 and ICSK2, the two idiosyncratic coskewness factors reduce the

monthly excess return of a long-short portfolio holding the portfolio with the lowest MAX

measure and shorting the portfolio with the highest MAX measure from 0.93% to 0.26%

(t = 1.34). The results are robust to controls for size, book-to-market and momentum.

Second, there is an anonymous negative relation between equity returns and default risk.

Recent empirical studies (Dichev (1998), Griffin and Lemmon (2002), Campbell, Hilscher,

and Szilagyi (2008)) document a negative relationship between default risk and realized stock

returns. In addition, Campbell, Hilscher, and Szilagyi (2008) find that correcting for risk

using the standard risk factors worsens the anomaly. We show that the two idiosyncratic

coskewness factors can explain the anomalous finding that high stressed firms earn low equity
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returns. We use the Merton (1974) model to measure default risk for individual firms, and

find the anomalous negative relation between default risk and equity returns. When we

regress distress-sorted portfolio returns on the two idiosyncratic coskewness factors ICSK1

and ICSK2, we find that factor loadings on ICSK1 are generally declining with distress

measures, and factor loadings on ICSK2 are generally increasing with distress measures.

The two idiosyncratic coskewness factors reduce the monthly excess return of a long-short

portfolio holding the portfolio with the lowest distress measure and shorting the portfolio

with the highest distress measure from 1.42% (t = 2.19) to 0.64% (t = 1.01). Including

other standard risk factors, such as the market, size, value, and momentum factors, will not

significantly alter the factors loadings on the two idiosyncratic factors and the alpha of the

long-short portfolio.

Third, we show that the two idiosyncratic coskewness factors can help us understand

the negative relation between idiosyncratic volatility and equity returns found in Ang, Ho-

drick, Xing, and Zhang (2006). They find that stocks with high idiosyncratic volatility earn

abysmally low average returns. This puzzling finding cannot be explained by the standard

risk factors, such as the market, size, book-to-market, momentum, and liquidity. We show

that the two idiosyncratic coskewness factors can explain the monthly return difference be-

tween portfolios with the lowest and second highest idiosyncratic volatility. In addition, the

two idiosyncratic coskewness factors reduce the monthly return difference between portfolios

with the lowest and highest idiosyncratic volatility by more than 60%. However, the return

difference is still statistically significant.

This paper is organized as follows. Section 2 presents both theoretical and empirical

relations between idiosyncratic coskewness betas and equity returns. Section 3 explains

the findings in Bali, Cakici, and Whitelaw (2009) using idiosyncratic coskewness factors.

Section 4 explains the anomalous negative relation between default risk and equity returns

(Campbell, Hilscher, and Szilagyi (2008))using the idiosyncratic coskewness factors. Section

5 addresses the negative relation between equity returns and idiosyncratic volatility found
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in Ang, Hodrick, Xing, and Zhang (2006). Section 6 concludes.

2 Idiosyncratic Coskewness and Equity Returns

2.1 Theory

Empirical papers have documented that investors usually hold under-diversified portfolios

with a small number of securities. One possible explanation is that investors care about

idiosyncratic skewness in their portfolios. Barberis and Huang (2008) show that idiosyncratic

skewness is priced in equilibrium under the assumption that investors have preferences based

on the cumulative prospect theory1. Mitton and Vorkink (2008) demonstrate the same result

under the assumption of heterogeneous preference for skewness. However, they allow only

idiosyncratic skewness in their model. We extend their model and allow covariance between

the idiosyncratic variance of individual asset returns and the market return, which is named

as idiosyncratic coskewness. We then derive and test the relationship between equity returns

and idiosyncratic coskewness.

We assume that the universe of stocks consists of n risky assets and a risk-free asset.

The return vector of the n securities is denoted as R = [R1, ..., Rn]. The covariance of asset

returns is denoted Σ.

In our economy, we assume that there are two investors, a “traditional” investor and a

“Lotto investor”. Traditional investor utility can be approximated as a standard quadratic

utility function over wealth

U(W) = E(W)− 1

2τ
V ar(W), (1)

1Cumulative prospect theory is a modified version of “prospect theory” developed by Kahneman and
Tversky (1979). Under cumulative prospect theory, investors, departing from the predications of expected
utility, evaluate risk using a value function that is defined over gains and losses, that is concave over gains
and convex over losses, and that is kinked at the origin. In addition, investors use transformed rather
than objective probabilities, where the transformed probabilities are obtained from objective probabilities
by applying a weighting function, which overweighs the tails of the distribution it is applied to.
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where W is the investor terminal wealth, τ > 0 is the coefficient of risk aversion. Levy and

Markowitz (1979) and Hlawitschka (1994) show that the quadratic utility is a reasonable

approximation of standard expected utility functions. And it seems reasonable to assume

that, in the population, the traditional investor behaves as a mean-variance investor. The

“Lotto investor” has the same preferences as the traditional investor over mean and variance,

but also has preference for skewness

U(W) = E(W)− 1

2τ
V ar(W) +

1

3φ
Skew(W), (2)

where φ is the investor skewness preference. As shown in Cass and Stiglitz (1970), utilities (1)

and (2) can lead, under certain restrictions, to equilibrium portfolio separation. As φ −→∞,

the Lotto investor utility approaches the traditional investor utility as in Markowitz (1959).

It is insightful to notice that if all investors are lotto investors, then the model would be

reduced to the Kraus and Litzenberger (1976) coskewness model. Each investor maximizes

his expected utility subject to his budget constraint of the form

Wk = W0,kRf + ωᵀ
k(R−Rf1), k = T ,L

where Rf is the return on the risk-free asset, R − Rf1 is the vector of excess returns, ωT

is the asset demand for the traditional investor, and ωL is the asset demand for the Lotto

investor. The aggregate demand is ωM = ωT +ωL. For the traditional (hereafter T ) investor,

the first-order condition of (1) is

E(R−Rf1)− 1

τ
ΣωT = 0. (3)

For Lotto investors (hereafter L), the first-order condition is

E(R−Rf1)− 1

τ
ΣωL +

1

φ
E(ωᵀ

L(R− ER)(R− ER)ᵀωL)(R− ER) = 0. (4)
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To isolate the effect of idiosyncratic coskewness on returns, we assume that:

Cov
(
ε2, (Ri − ERi)

)
= 0. (5)

Cov (ε, (Ri − ERi) (Rj − ERj)) = 0 for i, j. (6)

where ε is defined by the return decomposition (Ri − ERi) = ai(WT − EWT ) + ε. Under

assumptions (5) and (6), we use equations (3) and (4) and decompose the expected excess

return as2:

ERi −Rf = λMβiM + λCSKβiCSK + λISKSkewi + λICSKβiICSK

where βiM , βiCSK , Skewi represent the asset’s beta, the asset’s coskewness, and the asset’s

idiosyncratic skewness respectively. λM , λCSK , and λICSK represent the price of risk of the

market, coskewness and idiosyncratic skewness factor. The quantity of risk βiICSK which

measures the co-movement between the asset’s “volatility” and the market return.

βiICSK =
Cov(RM , (Ri − ERi)

2)

V ar(RM)
,

is referred to as the idiosyncratic coskewness beta.3 Assumptions (5) and (6) are necessary

to isolate the effect of the idiosyncratic coskewness beta on asset returns. To investigate

the relation between idiosyncratic coskewness betas and expected returns we consider two

assets and form a portfolio of these two assets by changing the weight on these assets from

-1 to 1. We then study the return difference between the portfolio with the highest idiosyn-

cratic coskewness beta and the portfolio with the lowest idiosyncratic coskewness beta. To

perform our analysis, we fix the returns of the two assets and their idiosyncratic coskewness

betas. The top left graph in Figure 1 shows the relationship between the portfolio idiosyn-

cratic coskewness beta and the expected return when the idiosyncratic coskewness betas for

2See the proof in the Appendix.
3Our model set up is similar to Mitton and Vorkink (2008), but the result is different because we relax

their assumption that the idiosyncratic coskewness beta is zero.
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both assets are positive. SET1=(0.06,0.01,0.005,0.009) contains the expected returns, and

idiosyncratic coskewness betas of the two assets respectively. As shown in this graph, the

difference in expected returns between the portfolio with the highest idiosyncratic coskew-

ness beta and the portfolio with the lowest idiosyncratic coskewness beta is negative. For

a different set of values, SET1=(0.06,0.01,0.009,0.006), we reach the same conclusion in the

top left graph in Figure 2.

The bottom right graph in Figure 1 shows the relationship between idiosyncratic coskew-

ness betas and expected returns when the idiosyncratic coskewness betas for both assets are

negative. SET4=(0.06,0.01,-0.005,-0.009) contains the expected returns, and idiosyncratic

coskewness betas of the two assets respectively. As shown in this graph, the difference in

expected returns between the portfolio with the highest idiosyncratic coskewness beta and

the portfolio with the lowest idiosyncratic coskewness beta is positive. For a different set

of values, SET4=(0.06,0.01,-0.009,-0.005), we reach the same conclusion in the bottom right

graph in Figure 2.

The top right graph in Figure 1 shows the relationship between idiosyncratic coskewness

betas and expected returns when asset one has negative idiosyncratic coskewness beta and

asset two has positive idiosyncratic coskewness beta, SET3=(0.06,0.01,-0.005,0.009). The

bottom left graph in Figure 1 shows the relationship between idiosyncratic coskewness betas

and expected returns when asset one has positive idiosyncratic coskewness beta and asset

two has negative idiosyncratic coskewness beta, SET3=(0.06,0.01,0.005,-0.009). As shown in

these graphs, there is no a clear relationship between the portfolio idiosyncratic coskewness

beta and its expected return. We reach the same conclusion in the top right and bottom left

graphs in Figure 2. This suggests that, when all assets are used regardless of the sign of their

idiosyncratic coskewness betas, the relationship between excess returns and idiosyncratic

coskewness betas is “hump-shaped”.
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2.2 Equity Returns and Measures of Higher Moments Risk

In this section, we use the entire CRSP equity data set to investigate the relationship be-

tween equity returns and coskewness betas, idiosyncratic coskewness betas, and idiosyncratic

skewness respectively. At the beginning of each month, we use the past 12-month daily data

on individual stock returns to compute coskewness betas, idiosyncratic coskewness betas,

and idiosyncratic skewness respectively as defined in the previous section, and form portfo-

lios sorted by coskewness betas, idiosyncratic coskewness betas, and idiosyncratic skewness

respectively. To reduce the liquidity effect on equity returns, we eliminate firms with no

transaction days larger than 120. We also eliminate stocks with prices less than $1 at the

end of a month. Following the same method used to compute returns for distress-sorted

portfolios, we compute value-weighted returns for portfolios sorted by coskewness betas,

idiosyncratic coskewness betas, and idiosyncratic skewness respectively.

Table 1 reports the results for the decile portfolios sorted by coskewness betas, idiosyn-

cratic coskewness betas, and idiosyncratic skewness respectively. For the ten portfolios sorted

by coskewness betas, there is a slight negative relation between excess equity returns and

coskewness betas, which is consistent with Harvey and Siddique (2000). However, the re-

lationship almost disappears when we control for the Fama-French factors. In addition,

the relationship becomes positive when we control the Carhart four factors. For the ten

portfolios sorted by idiosyncratic coskewness betas, the relationship between excess equity

returns and idiosyncratic coskewness betas is hump-shaped, i.e. portfolios with both lowest

and highest idiosyncratic coskewness betas have lower excess returns than the others. This

hump-shaped relationship does not disappear even when we control the market factor, the

Fama-French factors, or the Carhart factors. This result is consistent with our theoretical

prediction. For the ten portfolios sorted by idiosyncratic skewness, there is a slight positive

relation between excess equity returns and idiosyncratic skewness. However, this relationship

basically disappears when we control the standard risk factors, such as the market factor,

the Fama-French factors, or the Carhart factors. Table 1 confirms our theoretical finding
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that the idiosyncratic coskewness measure is different from the standard coskewness and

idiosyncratic skewness measure. It is important to point out that empirically testing the

relation between idiosyncratic skewness and returns is not a straightforward exercise. The

primary obstacle is that ex ante skewness is difficult to measure. As opposed to variances

and covariances, idiosyncratic skewness is not stable over time. This explains the marginal

effect of idiosyncratic skewness on expected returns4.

To further investigate the cross-sectional relation between idiosyncratic coskewness betas

and idiosyncratic skewness, we run a simple OLS regression of idiosyncratic coskewness

betas on idiosyncratic skewness each month using the estimated idiosyncratic coskewness

betas and idiosyncratic skewness for all available firms. The time series of estimated slope

coefficients and R2s are plotted in Figure 3. It shows that there is a positive relation between

cross-sectional idiosyncratic coskewness and idiosyncratic skewness during the sample period.

However, the positive relation is very weak given that the average R2s from the regressions

is 1.8%. The results demonstrate that idiosyncratic coskewness betas and idiosyncratic

skewness measure different aspects of equity returns.

2.3 Equity Returns Sorted by Positive and Negative Idiosyncratic

Coskewness

We showed in the last section that there is a hump-shaped relation between equity returns

and idiosyncratic coskewness betas. To further investigate that relationship, we divide firms

into two groups according to the sign of their idiosyncratic coskewness betas. For each group,

we then rank the stocks based on their past idiosyncratic coskewness betas and form ten

value-weighted decile portfolios. Following the same method used to compute returns for

distress-sorted portfolios, we compute value-weighted returns for idiosyncratic coskewness

4To avoid this obstacle, Boyer, Mitton, and Vorkink (2009) regress idiosyncratic skeweness on a set of
predictor variables and use the expected component of their linear regression as a measure of expected
idiosyncratic skewness. Because the goal of this paper is to investigate whether idiosyncratic coskewness
betas explain the default risk puzzle, we do not investigate the empirical relationship between expected
idiosyncratic skewness and expected idiosyncratic coskewness. We leave this issue for future research.
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beta-sorted portfolios in each group.

Tables 2 and 3 report the results for the ten portfolios with positive and negative idiosyn-

cratic coskewness betas respectively. Panel A reports average excess returns, in monthly

percentage points, of idiosyncratic coskewness beta-sorted portfolios and the average return

of a long-short-portfolio holding the portfolio with the lowest idiosyncratic coskewness beta

and shorting the portfolio with the highest idiosyncratic coskewness beta. Panel A also

reports alphas with respective to the CAPM, the Fama-French three-factor model, and the

four-factor model proposed by Carhart (1997) that includes a momentum factor. Panel B

reports estimated factor loadings in the four-factor model with adjusted R2s. Figures 4 and

5 plot the alphas from regressions for the ten positive portfolios with positive and negatively

idiosyncratic coskewness betas respectively.

The average excess returns for the first nine portfolios with positive idiosyncratic coskew-

ness betas are almost flat. The average excess return for the tenth portfolio, which has the

highest idiosyncratic coskewness beta, is much lower than those for the other nine portfo-

lios. The average return for the long-short-portfolio which goes long the portfolio with the

lowest idiosyncratic coskewness beta and short the portfolio with the highest idiosyncratic

coskewness beta is 0.81% with a t-statistic of 1.87. The results weakly support the predic-

tion that excess returns decline with idiosyncratic coskewness betas rising when idiosyncratic

coskewness betas are positive.

There is also an interesting pattern in estimated factor loadings reported in Table 2.

Portfolios with low idiosyncratic coskewness betas have low loadings on the market factor,

negative loadings on the size factor SMB, and positive loadings on the value factor HML.

Portfolios with high idiosyncratic coskewness betas have high loadings on the market factor,

positive and high loadings on the size factor SMB, and negative loadings on the value factor

HML. There is no clear pattern in the estimated factor loadings for the momentum factor

UMD.

These factor loadings imply that when we correct risk using the market factor or the
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Fama-French three factors, we will not be able to explain why the portfolio with the high-

est idiosyncratic coskewness beta has such low excess returns compared to the other nine

portfolios. On the contrary, it will worsen the anomaly. In fact, alphas in the regressions

with respect to the CAPM, the Fama-French three-factor model, and Carhart four-factor

model are almost monotonically declining with idiosyncratic coskewness betas increasing. A

long-short portfolio that holds the portfolio with the lowest idiosyncratic coskewness beta

and shorts the portfolio with the highest idiosyncratic coskewness beta has a CAPM alpha

of 1.21% with a t-statistic of 3.14; it has a Fama-French three-factor alpha of 1.12% with

a t-statistic of 4.29; and it has a Carhart four-factor alpha of 0.98% with a t-statistic of

4.02. When we correct risk using the standard factors, we find stronger evidence to support

the prediction that there is a negative relationship between excess returns and idiosyncratic

coskewness betas when idiosyncratic coskewness betas are negative.

For the ten portfolios with negative idiosyncratic coskewness betas, the average excess re-

turns reported in Table 3 are almost monotonically increasing with idiosyncratic coskewness

betas. It is consistent with the prediction that there is a positive relationship between excess

returns and idiosyncratic coskewness betas when idiosyncratic coskewness betas are negative.

A long-short portfolio that holds the portfolio with the lowest idiosyncratic coskewness beta

and shorts the portfolio with the highest coskewness beta has an excess return of -0.63%

with a t-statistic of 2.00.

There is a clear pattern in estimated factor loadings for the market factor and the size

factor SMB in the four-factor regression. Portfolios with low idiosyncratic coskewness be-

tas have high loadings on the market factor and the size factor SMB. Portfolios with high

idiosyncratic coskewness betas have low loadings on the market factor and the size factor

SMB. There is no clear pattern in estimated factor loadings for the value factor HML and

the momentum factor UMD. These loading implies that when we cannot explain the return

difference using the standard risky factors. In fact, controlling those factors increases return

difference for portfolios sorted by idiosyncratic coskewness betas. The same long-short port-
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folio has a CAPM alpha of -0.88% with a t-statistic of 2.74; it has a Fama-French three-factor

alpha of -0.85% with a t-statistic of 3.76; and it has a Carhart four-factor alpha of -0.61%

with a t-statistic of 2.48.

In summary, the empirical results support that the relationship between equity returns

and idiosyncratic coskewness betas is positive when idiosyncratic coskewness betas are neg-

ative, and negative when idiosyncratic coskewness betas are positive. In addition, we find

that the return difference between portfolios sorted by idiosyncratic coskewness betas, with

either positive or negative values, cannot be explained by the standard risk factors, such as

the market factor, the size factor, the value factor, and the momentum factor. In the next

section, we will examine the relationship between default risk and idiosyncratic coskewness.

2.4 Idiosyncratic Coskewness Factors

We investigate two value-weighted hedge portfolios that capture the effect of idiosyncratic

coskewness. As discussed in the previous section, at the beginning of each month, we use

past 12 month daily equity returns to estimate idiosyncratic coskewness beta for each in-

dividual firm. We first divide firms into two groups according to the sign of the estimated

idiosyncratic coskewness betas, then we form value-weighted decile portfolios based on the

estimated idiosyncratic coskewness betas. We compute the excess portfolio returns in the

following month (i.e. post-ranking). We construct the long-short portfolio holding the

portfolio with the lowest idiosyncratic coskewness beta and shorting the portfolio with the

highest idiosyncratic coskewness beta. The long-short portfolio in the group with negative

idiosyncratic coskewness beta is called ICSK1, and the long-short portfolio in the group with

positive idiosyncratic coskewness beta is called ICSK2. We use ICSK1 and ICSK2 to proxy

for idiosyncratic coskewness factors.

The average monthly excess returns for ICSK1 and ICSK2 are 0.81% and -0.63% respec-

tively over the period January 1971 to December 2006. We reject the hypothesis that the

mean excess return for factor ICSK2 is zero at the 5 percent level of significance. But we
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cannot reject the same hypothesis for factor ICSK1. A high factor loading on ICSK1 should

be associated with high expected excess returns. In contrast, for factor ICSK2, a high factor

loading should be associated with low expected excess returns.

2.5 Can Idiosyncratic Coskewness Factors Explain the Fama and

French Portfolios?

The failures of the CAPM model often appear in specific groups of securities that are formed

on size, book-to-market ratio and momentum. To understand how idiosyncratic coskewness

factors enter asset pricing, we analyze the pricing errors from other asset pricing models

such as the Fama-French three-factor model, and the four-factor model proposed by Carhart

(1997).

We carry out time-series regressions of excess returns,

ri,t = αi +
K∑

j=1

β̂jfj,t + ei,t, for i = 1, ..., N, t = 1, ..., T, (7)

and jointly test whether the intercepts, αi, are different from zero using the F-test of Gibbons,

Ross, and Shanken (1989) where F ∼ (N, T − N − K). We test the Fama-French three

factor model and Carhart four-factor model for industrial portfolios, decile portfolios sorted

by size, book-to-market ratio, and momentum, and decile portfolios sorted by idiosyncratic

coskewness beta. The results are presented in Table 4. When we test 10 portfolios sorted by

the book-to-market ratio, the inclusion of the two idiosyncratic coskewness factors reduces

the F-statistics from 4.96 to 1.95 in the Fama-French model and from 3.39 to 1.31 in the

Carhart model. Similar results are obtained for momentum-sorted portfolios and portfolios

sorted by idiosyncratic coskewness beta. In all cases, the inclusion of the two idiosyncratic

coskewness factors in either the Fama-French model or the Carhart model dramatically

reduces the F-statistics. The results suggest that the two idiosyncratic coskewness factors

can explain a significant part of the variation in returns even when factors based on size,
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book-to-market ratio, and momentum are added to the asset pricing model.

3 MAX Returns and Idiosyncratic Coskewness

A recent empirical paper by Bali, Cakici, and Whitelaw (2009) investigates the significance of

extreme positive returns in the cross-sectional pricing of stocks. Their portfolio-level analysis

and firm-level cross-sectional regressions indicate a negative and significant relation between

the maximum daily return over the past month (MAX) and expected stock returns. Average

raw and risk-adjusted return differences between stocks in the lowest and highest MAX

deciles exceed 1% per month. Their results are robust to controls for size, book-to-market,

momentum, short-term reversals, liquidity, and skewness. The idiosyncratic coskewness

beta proposed in this paper directly measures the relationship between the expected return

of a stock and its contribution to the skewness of the portfolio. We investigate whether

our idiosyncratic coskewness factors can explain the puzzling finding in Bali, Cakici, and

Whitelaw (2009). We first replicate their findings using the CRSP data set, then we examine

the linkage between idiosyncratic coskewness and their anomalous findings by regressing

portfolio sorted by the maximum daily return over the past month on the standard and the

two idiosyncratic coskewness factors. The results are reported in table 5.

Following the same method discussed in Bali, Cakici, and Whitelaw (2009), we sort all

stocks on the maximum daily return over the past month and divide them into 10 decile

portfolios. The average excess returns of deciles 1 (low MAX)to 7 are approximately the

same, in the range of 0.51% to 0.68% per month, but, going from decile 7 to decile 10 (high

MAX), average excess returns drop significantly, from 0.51% to 0.35%, 0.15% and then to

0.42% per month. The average excess return of the portfolio with the lowest maximum

daily return over the past month is 0.93% per month higher than that of the portfolio

with the highest maximum daily return over the past month. In addition, the monthly

return difference is 1.36%, 1.15%, and 0.97% when we control for the market factor, the
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Fama-French factors, and the Carhart factors, respectively. The return differences are all

statistically significant. The results are consistent with the findings in Bali, Cakici, and

Whitelaw (2009). They interpret the results as “Given a preference for upside potential,

investors may be willing to pay more for, and accept lower expected returns on, assets with

these extremely high positive returns.”

When we add the two idiosyncratic coskewness factors into the regression of returns of the

10 decile portfolios on the market factor, the monthly return difference between the portfolio

with the lowest and the highest maximum daily return over the past month is reduced from

1.36% to 0.43% with a t-statistics 1.92. When we add the two idiosyncratic factors into the

regressions using Fama-French 3 factors and Carhart 4 factors, the monthly return difference

between the portfolio with the lowest and the highest maximum daily return over the past

month is reduced from 1.15% (t = 4.66) to 0.40% (t = 1.78), and from 0.97% (t = 3.61)

to 0.34% (t = 1.51), respectively. In addition, we have sorted all stocks on the average of

the maximum two and three daily returns over the past month respectively. We obtain very

similar results when we add the two idiosyncratic coskewness factors to the regressions.

Bali, Cakici, and Whitelaw (2009) rely on the cumulative prospect theory as modeled

in Barberis and Huang (2008) to explain their findings. We provide an alternative rational

explanation based on the assumption of heterogeneous preference. The “Lotto investor” who

cares not only about the mean and variance of his portfolio but also about the skewness of

his portfolio would bid up those lottery-like stocks to improve his portfolio allocation.

4 Default Risk and Idiosyncratic Coskewness

4.1 Equity Returns on Distressed Stocks

Recent empirical studies by Dichev (1998), Griffin and Lemmon (2002), and Campbell,

Hilscher, and Szilagyi (2008) find a surprising negative relation between expected equity

returns and default risk. If the stocks of financially distressed firms tend to move together,
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and their risk cannot be diversified away, finance theory dictates a positive relation between

expected equity returns and default risk. If default risk is idiosyncratic, there is no signif-

icant relation between expected returns and default risk. These empirical findings seem to

suggest that the equity market has not properly priced default risk. We examine if the two

idiosyncratic coskewness factors can explain the negative relation between equity returns

and default risk.

We use the Merton (1974) model to estimate the default probability for each firm (see

appendix B), and examine the relationship between the likelihood of default and equity

returns. We use the same method to estimate default likelihood as Vassalou and Xing (2004).

Unlike Vassalou and Xing (2004), we use only industrial firms, which are more suitable for

Merton’s model. We also minimize liquidity effects on equity returns by eliminating illiquid

stocks. At the end of each month, we sort firms according to their default measures and

construct 10 portfolios as discussed in the previous section. Because highly distressed firms

are more likely to be delisted and disappear from the CRSP database, it is important to

carefully compute equity returns for delisted firms. CRSP reports a delisting return for

the final month of a firm’s life when it is available. In this case, we use delisting returns

to compute portfolio returns. When delisting returns are not available, we exclude those

firms from portfolios. This assumes that those stocks are sold at the end of the month

before delisting, which implies an upward bias to the returns for distressed-stock portfolios

(Shumway (1997)).

Table 7 reports the summary statistics of equity returns on the ten distress-sorted port-

folios. The average returns are declining in general with default measures increasing. The

average return is 0.92% for the portfolio with the lowest default risk, and it is -0.51% for the

portfolio with the highest default risk. The volatilities of returns are increasing with default

measures. The standard deviation of returns is 4.48% for the portfolio with the lowest de-

fault risk, and it is 14.95% for the portfolio with the highest default risk. In addition, returns

on portfolios with low default measures exhibit negative skewness, and returns on portfo-
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lios with high default measures exhibit positive skewness. There is no clear pattern in the

kurtosis of returns. Table 7 also reports the unconditional coskewness betas, idiosyncratic

coskewness betas, and idiosyncratic skewness of the ten distress-sorted portfolios. There is

no clear pattern in the coskewness betas. However, both idiosyncratic coskewness betas and

idiosyncratic skewness are in general increasing with default measures. The average size of

firms in the ten portfolios is monotonically declining with default measures increasing. It

suggests that controlling for the size risk factor will not explain the puzzling negative relation

between equity returns and default risk.

A possible explanation for the negative relation between equity returns and default mea-

sures is that the default measure is just a proxy for other systematic risk factors. We test

this hypothesis with regression results in Table 8. Panel A reports the excess returns of

ten distress-sorted portfolios and a long-short-portfolio that goes long the portfolio with the

lowest default risk, and short the portfolio with the highest default risk. Panel A also reports

the alphas in regressions of the portfolio excess returns on the CAPM factor, Fama-French

three factors, and four factors proposed by Carhart (1997) that includes a momentum factor

in addition to Fama-French three factors. The returns are reported in monthly percentage

points, with Robust Newey-West t-statistics below in the parentheses. Panel B, C, and D

report estimated factor loadings for excess returns on the CAPM factor, Fama-French three

factors, and four factors in the Carhart (1997) model. Figure 7 plots the alphas from these

regressions.

The average excess returns of the 10 stress-sorted portfolios reported in Table 8 are in

general declining in the default risk measure. The average excess return for the lowest-risk

5% of stocks is positive at 0.43% per month, and the average excess return for the highest-

risk 1% of stocks is negative at -0.99% per month. A long-short portfolio that goes long

the safest 5% of stocks, and short the most distressed 1% of stocks has an average return of

1.42% per month with a standard deviation of 14%. It implies a Sharp ratio of 0.10.

There is also a significant pattern on the factor loadings reported in Table 8. The low risk
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portfolios in general have smaller market betas, negative loadings on the size factor SMB,

and negative loadings on the value factor HML. On the contrary, the high risk portfolios

in general have bigger market betas, positive loadings on the size factor SMB, and positive

loadings on the value factor HML. The results reflect the fact that most distressed stocks

are small stocks with high book-to-market ratios. It implies that correcting risk using the

market factor or Fama-French factors will not solve the anomaly but worsen it. In fact,

the long-short portfolio that is long the safest 5% of stocks, and short the most distressed

1% of stocks has a CAPM alpha of 1.94% per month with a t-statistic of 3.16. It has a

Fama-French three-factor alpha of 2.76% per month with a t-statistic of 4.90. In addition,

the Fama-French three-factor alphas for all portfolios beyond 40th percentile of the default

risk distribution are negative and statistically significant.

Avramov, Chordia, Jostova, and Philipov (2007) find a robust link between credit rating

and momentum. They find that momentum profit exists only in low-grade firms. Distressed

firms have negative momentum, which may explain their low average returns. When we

correct for risk by using the Carhart (1997) four-factor model including a momentum factor,

the low risk portfolios in general have low and positive loadings on the momentum factor.

The high risk portfolios have high and negative loadings on the momentum factor. After

controlling for the momentum factor, we find that the alpha for the long-short portfolio is

cut almost in half, from 2.76% per month to 1.38% per month, which is still statistically

significant.

4.2 Explaining Equity Return for Distressed Firms

We have demonstrated that in a model with heterogeneous investors who care about the

skewness of their portfolios, the expected return of risky assets depends on their market

betas, coskewness betas, idiosyncratic coskewness betas and idiosyncratic skewness. To

capture the effect of coskewness on cross-sectional equity returns, we construct a value-

weighted hedge portfolio, i.e. the coskewness factor, holding the portfolio with the lowest
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coskewness beta and shorting the portfolio with the highest coskewness beta. In a similar

fashion, we also construct a hedge portfolio, i.e. the idiosyncratic skewness factor, to capture

the effect of idiosyncratic skewness.

We have shown that the standard risk factors, such as the market factor, the Fama-French

factors, and the Carhart four risk factors, cannot explain why high distressed firms earn low

equity returns. In our model, expected equity returns depend on not only their CAPM betas,

but also their coskewness betas, idiosyncratic coskewness betas and idiosyncratic skewness.

We investigate if coskewness betas, idiosyncratic coskewness betas or idiosyncratic skewness

can help explain the anomaly. We first run simple regressions of returns of distress-sorted

portfolios on the market factor, the coskewness factor, the two idiosyncratic coskewness

factors, and the idiosyncratic skewness factor. The results presented in Table 9 show that

the equity return anomaly for distressed firms still exists when we control for any of the

market factor, the coskewness factor, and the idiosyncratic skewness factor. The monthly

return difference between portfolios with the lowest and highest default probabilities is 1.94%

(t = 3.16), 1.41% (t = 2.18), and 1.66% (t = 2.55), respectively, when we control for the

market factor, the coskewness factor, and the idiosyncratic skewness factor. The return

differences are statistically significant at the 5% level. However, the monthly return difference

between portfolios with the lowest and highest default probabilities is 0.73% (t = 1.12) and

0.89% (t = 1.45), respectively, when we control for the positive and negative idiosyncratic

coskewness factors. The return differences are not statistically significant at the 5% level.

The simple regression results show that either positive or negative idiosyncratic coskew-

ness factors can at least partially explain why equity returns are low for high distressed

firms. High distressed firms will earn low equity returns if they have negative loadings on

the positive idiosyncratic coskewness factor and positive loadings on the negative idiosyn-

cratic coskewness factor. We will further test this hypothesis by regressing distress-sorted

portfolio returns on two idiosyncratic coskewness factors, ICSK1 and ICSK2. We will also

test the robustness of our results by including other risk factors, such as the Fama-French
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factors and the momentum factor, in the regressions. The regression results are reported in

Table 10.

When we regress excess returns for distress-sorted portfolios on the two idiosyncratic

coskewness factors, we find striking variations in factor loadings across portfolios. The factor

loadings for factor ICSK1 are almost monotonically declining with default risk increasing.

In contrast, the factor loadings for factor ICSK2 are almost monotonically increasing with

default risk. The portfolio with the highest default risk has negative loadings on factor ICSK1

and positive loadings on ICSK2. They are both statistically significant at 1% level. Since a

positive loading on factor ICSK1 and a negative loading on ICSK2 will reduce expected excess

returns, controlling for the two idiosyncratic coskewness factors helps explain the equity

return anomaly for distressed firms. The same result can be found in the regression of excess

returns for a long-short portfolio holding the safest portfolio and shorting the most risky

portfolio on the two idiosyncratic coskewness factors. The factor loading is positive for factor

ICSK1 and negative for factor ICSK2. Both loadings are statistically significant. Controlling

for the two idiosyncratic coskewness factors cuts alphas for the long-short portfolio roughly

in half, from 1.42% to 0.64%, and it is not statistically significant.

To examine the robustness of our findings, we include four standard risk factors (MKT,

SMB, HML, UMD)in the regression. For the ten distress-sorted portfolios and the long-short

portfolio, the factor loadings on the two idiosyncratic coskewness remain similar. Alpha for

the long-short portfolio is 0.73% with a t-statistic of 1.11.

The results show that the explanatory power of the two idiosyncratic coskewness factors

is large for firms on both tails of the distribution of distress measures. The adjusted R2 in

the regression of returns of the long-short portfolio based on default measures on the two

idiosyncratic coskewness factors is 28%. The negative loading on ICSK1 and positive loading

on ICSK2 help reduce the alpha for the long-short portfolio based on distress measures.
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5 Idiosyncratic Volatility Puzzle and Idiosyncratic Coskew-

ness

An empirical study by Ang, Hodrick, Xing, and Zhang (2006) finds a negative relation

between the expected return and a stocks’s idiosyncratic volatility (IVOL) relative to the

Fama and French (1993) three-factor model. This negative relationship cannot be explained

by a number of standard risk factors, such as the aggregate volatility, size, book-to-market,

momentum, and liquidity. Next we investigate if the two idiosyncratic coskewness factors

can explain this phenomenon.

We compute idiosyncratic volatility using residuals from a regression of past 1-year daily

equity returns on the Fama-French three factors. We then sort stocks into 10 decile portfolios

according to the computed idiosyncratic volatility. We computed the equity returns for each

portfolio for the following month. The results are presented in Table 11.

The average excess returns of deciles 1 (low IVOL) to 6 are approximately the same, in

the range of 0.53% to 0.68% per month, but, going from decile 6 to decile 10 (high IVOL),

average excess returns drop significantly, from 0.55% to 0.34%, 0.07%, -0.12% and then

to -0.72% per month. Ang, Hodrick, Xing, and Zhang (2006) sort stocks into 5 quintile

portfolios, and the average returns of the first three portfolios are approximately the same,

and the average return of the last drops significantly. The average returns of the 10 decile

portfolios in our study exhibit the same pattern.

The average excess return of the portfolio with the lowest idiosyncratic volatility is 1.28%

per month higher than that of the portfolio with the highest idiosyncratic volatility. The

monthly return difference is 1.74%, 1.72%, and 1.41% when we control for the market factor,

the Fama-French factors, and the Carhart factors respectively. The return differences are

all statistically significant. The results are very similar to those in Ang, Hodrick, Xing,

and Zhang (2006). In addition, the average excess return of the portfolio with the lowest

idiosyncratic volatility is 0.68% per month higher than that of the portfolio with the second
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highest idiosyncratic volatility. The monthly return difference is 1.15%, 0.95%, and 0.77%

when we control for the market factor, the Fama-French factors, and the Carhart factors,

respectively. The return differences are all statistically significant when we control for the

standard risk factors.

When we add the two idiosyncratic coskewness factors into the regression of excess returns

of the 10 decile portfolios on the market factor, the monthly return difference between the

portfolio with the lowest and the highest idiosyncratic volatility is reduced from 1.74% to

0.47%. The return difference is still statistically significant. However, the monthly return

difference between the portfolio with the lowest and the second highest idiosyncratic volatility

is reduced from 1.15% to 0.01%, which is not statistically significant. When we add the two

idiosyncratic factors into the regressions using Fama-French 3 factors and Carhart 4 factors,

the monthly return difference between the portfolio with the lowest and the highest maximum

daily return over the past one month is reduced from 1.2% to 0.78%, and from 1.41% to

0.64%, respectively. The reductions are large, but the return difference is still statistically

significant. However, the monthly return difference between the portfolio with the lowest

and the second highest idiosyncratic volatility is reduced from 0.95% to 0.12%, and from

0.77% to 0.08% respectively. The return differences are not statistically significant.

The results show that although the two idiosyncratic coskewness factors cannot solve the

idiosyncratic volatility puzzle, they reduce the magnitude of the anonymous return difference

between the portfolio with the lowest and highest idiosyncratic volatility by more than 60%.

6 Conclusion

We build a theoretical model of heterogeneous skewness preference that leads to asset-pricing

relationships that differ from the standard CAPM model. We show that the expected excess

return on a skewed security depends the standard risk premium in the CAPM model and

the asset’s idiosyncratic coskewness betas which measures the covariance of the squared
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idiosyncratic shock and the market return.

We empirically show that in addition to the well known idiosyncratic skewness, the

idiosyncratic coskewness measure is also an important determinant for asset returns. Our

measure of idiosyncratic coskewness cannot be explain by the idiosyncratic skewness, this

suggests that both idiosyncratic skewness and idiosyncratic coskewness measure different

higher moment risks. The idiosyncratic coskewness can explain the anomalous finding that

stocks with the maximum daily return over the past month (MAX) earn low expected returns

(see Bali, Cakici, and Whitelaw (2009)).

We also provide a rational explanation of the seemingly anomalous negative relation

between default risk and equity returns. Although a number of theories point toward a

lower return for stocks with default risk, empirical testing of the relation between default

risk and measures of idiosyncratic skewness has been slow in coming. We attempt to fill

this void by estimating a model of idiosyncratic coskewness and then using idiosyncratic

coskewness to explain the negative relation between default risk and equity returns. We

find that once we control for idiosyncratic coskewness, the negative relation between equity

returns and default risk disappears.

Furthermore, the idiosyncratic coskewness seems to be related to the idiosyncratic volatil-

ity puzzle found in Ang, Hodrick, Xing, and Zhang (2006). Although the idiosyncratic

coskewness factors cannot totally explain the negative relation between equity return and

idiosyncratic volatility, they significantly reduced the magnitude of the return difference

between portfolios with the smallest and largest idiosyncratic volatility.

23



Appendix A: Equity Returns and Idiosyncratic Coskew-

ness

Since the economy should generate the same expected excess return regardless of investor

preferences, the expected excess returns in (3) and (4) have to be identical. This allows us

to write the equilibrium expected excess return as

E(R−Rf1) =
1

2τ
Σ(ωL + ωT )− 1

2φ
E(ωᵀ

L(R− ER)(R− ER)ᵀωL)(R− ER). (A-1)

with Σ = E(R−ER)(R−ER)>. Notice that ωM = ωL+ωT represents the aggregate demand

in this economy, hence (ωM)>R can be treated as the return on the market portfolio, denoted

by RM . Notice that ωL = ωM−ωT . Given that (A-1) holds , the equilibrium expected excess

return on the risky asset i is

E(Ri −Rf ) =
1

2τ
Cov (RM , Ri)− 1

2φ
Cov

(
(RM − ERM)2 , Ri

)
(A-2)

− 1

2φ
Cov

((
ω>T (R− ER)

)2
, Ri

)

−1

φ
Cov

(
(RM − ERM)

(
ω>T (R− ER)

)
, Ri

)
.

To isolate the effect of idiosyncratic coskewness, we use the return decomposition (Ri − ERi) =

ai(WT − EWT ) + ε, and assumptions (5) and (6) to decompose the expected excess return

as:

ERi −Rf = λM
Cov (RM , Ri)

V ar (RM)
+ λCSK

Cov
(
(RM − ERM)2 , Ri

)

V ar (RM)

+λIS
E (Ri − ERi)

3

σ3
i

+ λISC

Cov
(
RM , (Ri − ERi)

2)

V ar (RM)

with

λM =
1

2τ
V ar (RM) , λCSK = − 1

2φ
V ar (RM) , λIS = − 1

2φa2
i

σ3
i , λICSK = − 1

φai

V ar (RM) .
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Appendix B.1: Measuring Default Probability with the

Merton’s Model

In the default risk literature, there are two approaches to measure default risk, the reduced-

form and structural approaches. A reduced-form model provides the maximum likelihood

estimates of a firm’s default probability based on the empirical frequency of default and

its correlation with various firm characteristics. A structural model provides an estimated

default probability which is theoretically motivated by the classical option-pricing models

(Merton (1974)). Traditional reduced-form models, such as Altman (1968) Z-score model

and Ohlson (1980) O-score model, compute measures of bankruptcy by using accounting

information in conditional logia models. Accounting models use information from firms’

financial statement. The accounting information is about firms’ past performance, rather

than their future prospects. In contrast, structural models use the market value of equity

to derive measures of default risk. Market prices reflect investors’ expectations about firms’

future performance. Therefore, they are better suited for measuring the probability that a

firm may default in the future. In this paper, we use Merton’s (1974) model to estimate

the default probability of a firm. In Merton’s model, the equity of a firm is viewed as a call

option on the value of firm’s assets. The firm will default when the value of the firm falls

below a strike price, which is measured as the book value of firm’s liabilities. The firm value

is not observable and is assumed to follow a geometric Browning motion of the form:

dVA = µAVAdt + σAVAdW, (A-3)

where VA is the value of firm’s assets, with an instantaneous drift µA, and an instantaneous

volatility σA. W is the standard Wiener process.

Let Xt denote the book value of firm’s liabilities at time t, which has a maturity at time
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T . The value of equity is given by the Black and Schools (1973) formula for call options:

VE = VAN(d1) + Xe−rT N(d2), (A-4)

where

d1 =
ln(VA/X) + (r + 1

2
σ2

A)T

σA

√
T

, d2 = d1 − σA

√
T , (A-5)

r is the risk-free interest rate, and N is the cumulative density function of the standard

normal distribution.

Using daily equity data from the past 12 months, we adopt a maximum likelihood method

developed by Duan (1998) to obtain an estimate of the volatility of firm value σA. Duan

(1998) computes the likelihood function of equity returns by utilizing the conditional density

of the unobservable firm value process. We repeat the estimation procedure at the end

of every month, resulting in monthly estimates of the volatility σA. We always keep the

estimation window to 12 months.

With an estimated σA, we can calculate daily values of VA for the last 12 months, and

then estimate the drift µA. At the end of every month t, the probability of default implied

by Merton’s model is given by:

Pdef,t = N(
ln(VA,t/Xt) + (µA − 1

2
σ2

A)T

σA

√
T

). (A-6)

The Pdef,t calculated from equation (A-6) does not correspond to the true default prob-

ability of a firm in large samples since we do not use data on actual defaults. However, we

use our measures to study the relationship between default risk and equity returns. The

difference between our measure of default probability and true default probability may not

be important as long as our measure correctly ranks firms according to their true default

probability.
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Appendix B.2: Data

One important parameter in Merton’s model is the strike price, i.e. the book value of debt.

Most firms have both long-term and short-term debts. Following KM, we calculate the book

value of debt by using short-term debt plus half long-term debt. We use the COMPUSTAT

annual files to obtain the firm’s “Debt in One Year” and “Long-Term Debt” series for all

firms. Since debt data was not available for many firms before 1970, the sample period

in our study is January 1971 to December 2006. In addition, financial firms have very

different capital structure than industrial firms. We exclude all financial firms (SIC codes:

6000–6999). We also exclude all utility firms (SIC codes: 4900–4999) because many utility

firms were highly regulated during our sample period. We use only industrial firms (SIC

codes: 1–3999 and 5000–5999) in this studies since they are more suitable for Merton’s

model. We obtain all industrial firms with data available simultaneously on both CRSP and

COMPUSTAT databases.

We obtain the book value of debt from the COMPUSTAT annual files. To avoid the

problem of delayed reporting, we lag the book value of debt by 3 months. This is to ensure

that our default probability measure is based on all information available to investors at the

time of calculation.

To compute the default likelihood measure, we obtain daily equity values for firms from

CRSP daily files, and the risk-free interest rate from the Fama-Bliss discount bond file. We

use monthly observations of the 1-year Treasury bill rate and equity data for the past 12

months to calculate monthly default measures for all firms.

When a firm is in sever financial distress, its equity is not liquid with low prices. To

minimize liquidity effects on equity returns, we eliminate stocks with prices less than $1 at

the portfolio construction date, and stocks with less than 120 transactions in the past 12

months. In the end, we have 10,078 firms with more than 3.5 million monthly observations

in the sample.

Figure 6 plots the average default probability for industrial firms during the sample
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period. The shaded areas represent the NBER recession periods. The graph shows that the

average default probability varies greatly and it usually peaks during recessions.

Appendix B.3: Performance of Merton’s Model

To test the performance of Merton’s model in predicting bankruptcy and other distress in our

sample, we construct two measures based on exchange delisting as proxies for bankruptcy.

One is a narrower measure of distress, called bankruptcy delisting (delisting codes: 400,

572, 574). The other is a broader measure of distress, called performance delisting (delisting

codes: 400, 550 to 585). The second measure includes delisting due to not only bankruptcy

and liquidation but also insufficient number of market makers, insufficient capital, surplus,

and/or equity, price too low, delinquent in filing, etc. All the delisting data are obtained

from CRSP.

To evaluate the predictive ability of our default measure to capture default risk, we sort

firms according to their estimated default probability based on past 12-month equity data.

At the end of each month from January 1971 through December 2006, default probability is

re-estimated using only historical data to avoid look-ahead bias. To pay greater attention to

the tail of the default risk distribution, we follow Campbell et. al. and construct 10 portfolios

containing stocks in percentiles 0–5, 5–10, 10–20, 20–40, 40–60, 60–80, 80–90, 90–95, 95–

99, and 99–100 (P1 and P10 denote the portfolios with the lowest and the highest default

probability respectively). In the following month, we then collect the number of bankruptcy

and performance delistings for each portfolio. The summary results are reported in Table 6.

The evidence shows that the default risk measure based on Merton’s model is a good ex ante

measure of probability of bankruptcy and other distress. The number of bankruptcy and

performance delistings generally increases with default risk measures from Merton’s model.

During the sample period, 46 out of 60 delistings due to bankruptcy and liquidation, and 213

out of 443 delistings due to performance come from the two portfolios with highest default

measures. These two portfolios contains the highest-risk 5% of stocks.
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Table 6: Predictive Performance of Merton’s Model

This table reports the number of bankruptcy and performance delistings as a function of default risk rank
based on Merton’s model. At the end of each month firms are assigned into portfolios according to their
probability of default measures. We construct 10 portfolios containing stocks in percentiles 0-5, 5-10,
10-20, 20-40, 40-60, 60-80, 80-90, 90-95, 95-99, and 99-100 of the distribution of the default measure.
Portfolio 1 contains firms with the lowest default probability measure. BD is the number of bankruptcy
and liquidation delistings, and PD is the number of performance delistings. The sample period is January
1971 to December 2006.

Number of Number of
Bankruptcy Delistings Performance Delistings

Portfolio (BD) (PD)
1 0 2
2 0 3
3 1 11
4 0 23
5 1 27
6 2 42
7 3 55
8 7 67
9 20 111
10 26 102
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Table 7: Summary Statistics of Returns on Distress-Sorted Portfolios

This table reports the mean, standard deviation, skewness, and kurtosis of monthly returns, in percentage
points, on ten distress-sorted portfolios. It also reports unconditional coskewness betas, idiosyncratic
coskewness betas, and idiosyncratic skewness of the ten portfolios, as well as the average size, in million
dollars, of firms in each portfolio. At the end of each month firms are assigned into portfolios according
to their probability of default measures. We construct 10 portfolios containing stocks in percentiles 0-5,
5-10, 10-20, 20-40, 40-60, 60-80, 80-90, 90-95, 95-99, and 99-100 of the distribution of the default measure.
Portfolio 1 contains firms with the lowest default probability measure. Value-weighted realized returns
in the next month are calculated for the ten portfolios. The sample period is January 1971 to December
2006.

0005 0510 1020 2040 4060 6080 8090 9095 9599 9900
Mean 0.92 0.98 1.17 1.03 1.01 0.88 0.81 0.36 0.41 −0.51
Stdev 4.48 4.40 4.36 4.87 5.81 6.57 7.64 9.02 10.70 14.96
Skew −0.29 −0.48 −0.16 −0.37 −0.41 −0.27 0.15 0.49 0.86 0.81
Kurt 5.42 4.94 4.65 5.53 5.28 5.13 7.53 9.82 13.36 7.65
Coskew(10−4) 0.31 −0.69 1.69 0.05 −0.95 −1.60 −1.70 −2.84 −2.89 0.76
Idio. Coskew(10−2) 0.01 0.00 0.00 0.00 0.01 0.04 0.09 0.22 0.30 0.65
Idio. Skew −0.26 −0.41 0.21 0.48 0.16 0.34 1.05 1.01 1.71 0.95
Mean size 4.90 4.33 2.80 1.43 0.71 0.35 0.18 0.11 0.10 0.07
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Figure 3: Cross-Sectional Relation Between Idiosyncratic Coskewness on Idiosyn-
cratic Skewness )

This graph plots estimated slope coefficients and R2 from regressions of idiosyncratic coskewness betas on
idiosyncratic skewness each month. The sample period is January 1971 to December 2006. Idiosyncratic
coskewness betas on idiosyncratic skewness are calculated using past 12-month daily returns for each
firm
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Figure 4: Alphas of Portfolios Sorted by Idiosyncratic Coskewness Betas (Positive
Values)

This graph plots monthly excess returns of 10 portfolios sorted by idiosyncratic coskewness betas (positive
values), and alphas with respect to the CAPM, the three-factor model of Fama-French (1993), and four-
factor model of Carhart (1997). The sample period is January 1971 to December 2006. Portfolios are
formed at the beginning of each month during the sample period.
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Figure 5: Alphas of Portfolios Sorted by Idiosyncratic Coskewness Betas (Negative
Values)

This graph plots monthly excess returns of 10 portfolios sorted by idiosyncratic coskewness betas (negative
values), and alphas with respect to the CAPM, the three-factor model of Fama-French (1993), and four-
factor model of Carhart (1997). The sample period is January 1971 to December 2006. Portfolios are
formed at the beginning of each month during the sample period.
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Figure 6: Average Default Probability

This graph plots monthly average default probabilities. The shaded areas denote recession periods, as
defined by NBER. The sample period is January 1971 to December 2006.
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Figure 7: Alphas of Distress-Sorted Portfolios

This graph plots monthly excess returns of ten distress-sorted portfolios, and alphas with respect to the
CAPM, the three-factor model of Fama-French (1993), and four-factor model of Carhart (1997). The
sample period is January 1971 to December 2006. Portfolios are formed at the beginning of each month
during the sample period.
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