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Abstract

An effective technique governments use to evaluate the desirability of different financing strategies involves

stochastic simulation. This approach requires the postulation of the future dynamics of key macroeconomic

variables and the use of those variables in the construction of a debt charge distribution for each individual

financing strategy. Summary measures of the resulting debt charge distributions permit comparison of

the alternative financing strategies. To defensibly generate a debt charge distribution for a given financing

strategy, however, one must have a good model to simulate the future dynamics of a set of key macroeconomic

variables into the future. This paper suggests a reduced-form approach to describe the key elements of the

stochastic model used to analyze the Government of Canada’s debt strategy problem. To this end, a simple

algorithm is proposed for the simultaneous simulation of the business cycle, the government’s financial

position, and the term structure of interest rates. The approach uses the constant parameter hidden-Markov

model introduced by Hamilton (1989) in combination with the class of affine term-structure models.

JEL classification: C0, C5, G0

Bank classification: Interest rates; Econometric and statistical methods; Debt management

Résumé

La simulation stochastique est une technique utilisée par les gouvernements pour évaluer l’utilité de diverses

stratégies de financement. Pour pouvoir l’effectuer, il faut commencer par formuler un ensemble d’hypothèses

sur le comportement dynamique qu’auront certaines variables macroéconomiques clés, puis effectuer, à l’aide

de ces variables, une distribution du service de la dette pour chacune des stratégies envisagées. Les statis-

tiques sommaires ainsi produites de ces distributions permettent de comparer les résultats que donne chacune

des stratégies de financement, ce qui illustre la nécessité de disposer d’un bon modèle de simulation du com-

portement dynamique des variables concernées. Dans le présent document, nous proposons d’utiliser une

représentation de forme réduite pour décrire les principaux éléments du modèle stochastique servant à anal-

yser le problème de la stratégie de la dette du gouvernement canadien. À cette fin, nous proposons d’utiliser

un algorithme simple pour simuler simultanément le cycle économique, la position financière du gouverne-

ment et la structure des taux d’intérêt. Dans le cadre de cette démarche, nous utilisons, conjointement avec

des modèles affines relatifs à la structure des taux d’intérêt, le modèle à paramètre constant latent de Markov

introduit par Hamilton (1989).

Classification JEL : C0, C5, G0

Classification de la Banque : Taux d’intérêt; Méthodes économétriques et statistiques; Gestion de la dette
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Towards a More Complete Debt Strategy Simulation Framework

1 Introduction

Governments typically borrow funds in domestic and/or foreign capital markets to finance any excess of

government expenditures over revenues as well as to refinance maturing debt issued during previous periods.

Every government engaged in this practice must determine what is the best way to borrow these funds—

whether through short-term treasury bills, longer-term coupon bonds, or a combination of these strategies.

This is often called the debt strategy problem. To resolve this problem, the government must consider a wide

number of alternative financing strategies. The ultimate decision hinges upon the cost and risk characteristics

of the portfolios arising from these financing strategies.

In recent years, a number of sovereigns have suggested the use of a stochastic simulation framework to

investigate this problem.1 Conceptually, this is straightforward. One merely selects a financing strategy

and then applies it under a variety of stochastically generated future scenarios. In this way, one constructs

a distribution of debt charges for a given financing strategy. Debt charges are the interest costs associated

with financing a given government debt portfolio. Comparison of financing strategies is then reduced to

making comparisons between their respective debt charge distributions. In other words, differences between

financing strategies can be identified through examination of summary measures of their generated debt

charge distributions.

To this end, one can use a number of alternative cost and risk measures to distinguish between the

desirability of different financing strategies. For example, one could compare the expected debt charges of

one financing strategy relative to another. Conversely, one might wish to look at all financing strategies

that maintain debt charge variance below a predetermined level over a given time interval.2 In each case,

however, the computation of these measures requires one to actually generate the debt charge distribution.

Indeed, the greater the confidence one places in the generated debt charge distribution, the more confidently

one can distinguish between financing strategies.

This paper is not directly concerned with examining and comparing different financing strategies. Instead,

it focuses on the stochastic simulation algorithm that is a critical subcomponent of the debt strategy problem.

In particular, to defensibly generate a debt charge distribution for a given financing strategy, one must

reasonably simulate the future dynamics of a set of key macroeconomic variables. The stochastic processes

employed in this debt strategy simulation framework are, therefore, analyzed in substantial detail. We are

convinced that if the stochastic processes can be selected and structured in a reasonable and defensible

manner, the subsequent analysis will be more meaningful.
1Excellent references include the Danish National Bank (1998a,b), Hörngren (1999), Holmlund (1999), and Bergström and

Holmlund (2000).
2In addition, the Danish National Bank (1998a) suggested the idea of using a cost-at-risk analysis, which is very similar in

spirit to value-at-risk.
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Towards a More Complete Debt Strategy Simulation Framework

This is a rather broad problem. We need to determine the macroeconomic variables of the greatest

importance, decide on the appropriate model to describe their future realizations, and estimate or calibrate

any model parameters. To assist in this effort, we define certain guidelines for developing of a framework that

generates the random processes that describe the evolution of our key macroeconomic variables. Specifically,

we require that:

• the stochastic processes employed capture the general empirical properties of the individual random

macroeconomic variables we wish to model;

• the model capture any important co-movements between those individual random variables;

• the model be conceptually simple, with a minimum of parameters, and have sufficient flexibility so as

to lend itself to sensitivity analysis and stress-testing;

• the computational time required to generate future sample paths not be prohibitively expensive.

The final guideline is important because, to construct our debt charge distributions for a number of differ-

ent financing strategies, we must consider literally hundreds of thousands of future outcomes. A lengthy

algorithm for the generation of our stochastic processes can render the computation of these debt charge dis-

tributions infeasible. Keeping these guidelines in mind, we can consider the basic macroeconomic ingredients

required in our stochastic simulation framework.

One obvious macroeconomic quantity required is the term structure of interest rates. Future interest

rates determine the cost of future borrowing. Clearly, future term structure outcomes are not known in

advance and thus the term structure must be modelled explicitly. In an earlier paper (Bolder 2001) the

author considers the applicability of employing the affine class of term structure models in the debt strategy

problem. This is a reasonable place to start—and, indeed, these models will form the foundation for our

term structure analysis—but more work is required because the term structure of interest rates is not the

only source of future uncertainty. A second key random variable is the financial position of the government.

Simply put, the future state of the government’s finances determines how much the government needs to

borrow in future periods.3

The government’s financial position is a function of its receipts and its expenditures. While the government

makes detailed plans with respect to those receipts and expenditures, there still remains a non-trivial amount

of residual future uncertainty. For instance, government tax receipts are related in an important manner

to the state of the economy. Tax receipts tend to fall in recessionary periods while they tend to rise

during periods of strong economic growth. Government expenditures exhibit a similar pattern. Government
3Technically, the borrowing requirement in any given future period depends upon the state of the government’s finances and

maturing debt. The maturing debt, however, is an entirely deterministic function of the composition of the government’s debt

portfolio and thus need not be modelled as a stochastic process.
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Towards a More Complete Debt Strategy Simulation Framework

spending programs, which constitute the bulk of the government’s expenditures, also exhibit this business-

cyclical pattern.4 The government’s financial position, therefore, depends on the general macroeconomic

conditions that prevail in the economy during that period.

We also know that the term structure of interest rates is not independent of the macroeconomy. In

particular, we empirically observe a rather steep term structure preceding periods of economic expansion

and a flat, or inverted, term structure prior to recessionary periods. In short, the steepness of the term

structure of interest rates actually serves as a good leading indicator of economic activity.

Based on this reasoning, we expect to observe an empirical relationship between the surplus position

of the government, the evolution of the term structure of interest rates, and the general macroeconomy.

Indeed, we believe that any reasonable stochastic simulation framework for the debt strategy problem must

incorporate this fact. In reality, however, this is a two-way relationship. That is, the government’s financial

position and the term structure of interest rates influence the state of the macroeconomy and vice versa.

One of the key simplifying assumptions of this work is that the relationship is one-directional. Simply put,

the macroeconomic state is assumed to influence the evolution of the term structure and the government’s

financial position, but these variables do not impact the macroeconomic state.5 Conceptually, therefore,

we assume that the state of the macroeconomy acts as a one-way link between the government’s financial

position and the term structure of interest rates. The primary objective of this paper is, conditional on this

key assumption, to describe a simple, reduced-form model that jointly captures the random evolution of

these three fundamental macroeconomic quantities.

Our suggested approach is described in the following three sections. Section 2 highlights the challenges

associated with constructing the joint model. The goal is to illustrate what the joint model must accomplish

to be a useful component of our simulation framework. Section 3 describes Hamilton’s (1989) hidden-Markov

model. This incredibly convenient approach is used to describe the evolution of the business cycle. In fact, it

forms the backbone of our joint model. Section 4 describes in detail our reduced-form model of the business

cycle, the term structure of interest rates, and the government’s financial position.

2 The Problem

Our goal is not to generate ex-post measures of the state of the economy, precisely forecast future interest rate

outcomes, nor construct a full-blown model of the economy that is entirely consistent with macroeconomic

theory. It is to find a model with sufficient flexibility to permit the simulation of future economic business

cycles in a manner that is broadly consistent with past behaviour. At the same time, we require arbitrage-
4This is particularly evident with automatic stabilizers such as social welfare spending.
5This is clearly a simplification of reality made to facilitate the analysis. We hope to be in a position to relax this assumption

in future work.
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free term structures and a reasonable model of future government financial positions.6 More specifically, we

desire a simple model that describes the fundamental stylized facts observed in interest rates, the business

cycle, and the government’s financial position. In this section, we will discuss the challenges of modelling

the government’s financial position and the term structure on an individual basis. Then we will consider

how one might attempt to model their evolution in a joint fashion.

First, we consider how we could model the government’s financial position. We could use a stochastic

process to describe the evolution of this macroeconomic variable. A reasonable suggestion might be the

mean-reverting Ornstein-Uhlenbeck process. We might, therefore, define the government’s financial position

as a stochastic process {F (t), t ∈ [0, T ]} with the following form,

dF (t) = α(β − F (t))dt+ ξdW (t), (1)

where {W (t), t ∈ [0, T ]} is a standard, scalar Wiener process. This is a mean-reverting process with a long-

term mean denoted by β and a mean-reversion parameter of α. A bit of reflection suggests that this is not

a bad start. A healthy government financial position will typically vary around zero, because a government

that incurs a deficit in a given period can alter its discretionary spending to help move its financial position

into positive territory in subsequent periods. On the opposite side of the spectrum, strong spending pressures

from various political groups imply that a large surplus position will also not likely persist over time. Finally,

random shocks can hit the economy that might move the government into either a deficit or surplus position.

In this model, the variability of the government’s financial position is governed by the Wiener process, W (t),

and the volatility parameter, ξ.

This is not the whole story. Unfortunately, the stand-alone stochastic process for the government’s

financial position suggested in equation (1) says nothing about the origin of these random shocks. We argue

that the underlying state of the macroeconomy is an important determinant in the random surprises to the

government’s financial position. Why is this the case? There are a number of ways in which the business

cycle can matter in this respect. First, automatic stabilizers such as unemployment insurance payments

and welfare spending imply that government expenditure will automatically increase as the economy enters

into a recession. Moreover, as output falls we would expect to see an associated decrease in tax revenues.

Falling revenue and increasing expenditure would indicate a smaller surplus or a possible deficit position.

Conversely, the more robust tax revenues and lower social welfare spending that typically accompany an

expansionary period would create a larger surplus position for the government. These pressures are not

likely to be extreme, because the government will (and does) use discretionary spending to control, as much

as possible, its financial position. Nevertheless, the previous logic implies that there is an important role for

the state of macroeconomy in determining a government’s financial position.
6If an interest rate model is not appropriately constructed, it can lead to negative forward interest rates and hence arbitrage

opportunities. We avoid this problem by considering models that, by construction, are free of arbitrage.

4



Towards a More Complete Debt Strategy Simulation Framework

We next consider how we could model the term structure of interest rates. Fortunately, previous work

has been done on applying the class of affine term-structure models to the debt strategy problem. Note,

however, that the term structure of interest rates also depends on the state of the macroeconomy. Substantial

evidence suggests that the relationship between the term structure of interest rates and the business cycle is

fairly involved. Clinton (1994), Atta-Mensah and Tkacz (1998), and Cozier and Tkacz (1994) provide both

empirical and theoretical arguments that describe how the term structure is a leading indicator of business

cycles. Specifically, the steepness of the term structure—as measured by the differential between short-term

and long-term interest rates—provides information regarding the future economic state. A flat or inverted

term structure (i.e., a small or negative differential) is typically followed by a slowdown in economic activity.

Increases in output, conversely, generally follow a steep term-structure environment. Figure 1 provides a

stylized view of this relationship.

Figure 1: Interest-Rate Differentials and Economic Cycles: This figure represents a stylized view of

the relationship between the interest-rate differential in long- and short-term interest rates and the business cycle.

Observe that preceding an economic slowdown this differential is small (i.e., the term structure is flat), while the

differential is large (i.e., the term structure is steep) before economic expansion.

Expansion

Recession

Flat

Flat Steep

Steep Flat

Flat

The class of affine term-structure models that we employ in our modelling efforts says nothing about the

general macroeconomic conditions in the economy. How might we then hope to incorporate the business cycle

into our term-structure model? One possible approach would be to assume that the parameterization of any

term-structure model is different depending on the state of the economy. For example, we might assume that

the parameter set, θ0, describes the evolution of the term structure of interest rates under a recessionary

period. Similarly, we could let an alternative parameter set, θ1, summarize expansionary term-structure
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dynamics. While this approach offers conceptual simplicity and permits a relatively straightforward approach

to parameter estimation, it is logically flawed. In particular, observe in Figure 1 that the periodicities of

the business cycle and the interest rate cycle do not coincide; that is, the flattest term structure—though

related to the possibility of recession—will not be temporally aligned with the trough of the business cycle.

Solving this problem is one of the principal challenges in developing our stochastic simulation framework.

The previous logic suggests that, if we wish to jointly describe the government’s financial position and

the term structure of interest rates, we should incorporate the business cycle. Indeed, in our analysis, the

business cycle will serve as a one-directional bridge between the government’s financial position and the term

structure of interest rates.7 Figure 2 illustrates structurally how we intend to proceed with the construction

of our joint model. If the business cycle is to be the link between the term structure of interest rates and

the government’s financial position, we need a good model for the evolution of the business cycle. This leads

us to inquire how we might, in a modelling sense, determine the current state of the economy. One obvious,

but also quite intuitive, step would be to use the rate of output growth in the economy. In situations of

economic expansion, we would expect to observe positive growth of 2 to 4 per cent in proxies such as gross

domestic product (GDP) and industrial production. Conversely, we anticipate that recessionary periods will

be typified by zero or negative output growth rates.

While output growth might be a convenient way to determine the state of the economy, it is certainly not

a model of the business cycle. At first glance, modelling the evolution of the business cycle may seem to be a

daunting task. Indeed, it is quite involved. Fortunately, there is a large amount of literature on the subject.

Hamilton (1989, 1990, 1996), Kim (1994), Filardo (1993, 1998), Filardo and Gordon (1993, 1994), Durland

and McCurdy (1994), and Diebold, Lee, and Weinbach (1993) examine a range of hidden-Markov models

that describe the non-linear relationship between output and the underlying state of the economy. Their

models generally assume that the economy can be in one of two possible states: recession or expansion. They

then specify probabilities that govern the transition of the economy over time from one state to another. For

example, if the economy is currently in expansion we must specify the probability of moving into a recession

in the current period as well as the probability of remaining in an expansion. A similar set of transition

probabilities must be determined for a situation where the economy is currently in a recession. It is upon

this conceptual framework that we will build the foundation of our model of the macroeconomy.

In addition, consider the flexibility of the hidden-Markov model. We can adapt this framework to improve

the breadth of our analysis in a consistent manner. What does this mean? The stochastic simulation
7Another, more practical, reason for modelling the business cycle is the length of the time interval under examination. The

typical time horizon for this simulation analysis is 10 years. We would reasonably expect to experience two or more business

cycles over a given 10-year period. In the short-term simulation exercises used to compute quantities such as value-at-risk, one

can usually safely ignore the importance of the business cycle. Given the high probability of experiencing multiple business

cycles, however, it would be difficult to defend ignoring this element in our analysis.
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Figure 2: The Basic Framework: To establish the link between the government’s financial position and the

term structure of interest rates, we will use the economic business cycle. To proxy the unobservable movement of the

business cycle, we use the growth rate of output as measured, for example, by an official statistic such as the gross

domestic product.
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framework proposed in this paper attempts to model the volatility of key macroeconomic variables under

normal market conditions. It is prudent, however, to also examine the impact of events that might occur

under abnormal market conditions. This is called stress testing and it represents an important element

in our debt strategy analysis. Using our hidden-Markov model, we could add a third state with a very

small transition probability that leads to extreme outcomes. This could be a large parallel shift in the term

structure of interest rates, substantially increased interest rate volatility, or term-structure inversion. It

could also involve negative outcomes for the government’s financial position. This is similar in spirit to the

peso problem. That is, the reason for a large, black-market depreciation of the Mexican peso during the late

1970s was attributed to the small probability of a hidden regime with huge consequences.8 Why is this sort

of analysis useful? Standard stress-testing methodologies do not make any statement about the probability

of their occurrence. This is a weakness because, in the absence of any sense of their likelihood, stress-test

results are difficult to interpret. In this setting, we could assign some arbitrary but small probability of

occurrence to this third state. These negative outcomes would then be reflected in the summary measures

of the associated debt charge distribution. This methodology would, therefore, provide us with the ability

to determine how large the probability of occurrence must be for it to have an important impact on the
8In this case, the event was the devaluation of the peso by Mexican authorities. It eventually occurred in 1982. For more

details see De Grauwe (1989, page 129).
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associated debt charge distribution.

We have established that, within a business cycle, a constant parameterization of the term structure of

interest rates is not appropriate. That is, the term-structure cycle and the business cycle do not coincide.

To capture this relationship between the term structure of interest rates and the business cycle, we propose

a simple technique that uses a transformation of one of the key outputs of Hamilton’s (1989) model, which

plays a crucial role in the discussion to follow. In fact, it is of such critical importance to our analysis that

section 3 is dedicated entirely to examining its logic and intuition.

3 Modelling the Economic Cycle

Ultimately, we require a model that describes the time-series evolution of output growth over some interval

of time. The model should have a structure that permits output growth to exhibit different behaviour during

recessionary and expansionary periods. Hamilton (1989) did the original work in this area and this section

is based almost entirely on his work. To motivate his path-breaking approach to this problem, consider the

following extremely simple time-series model over the predefined time interval, [0, T ],

yt − φyt−1 =

 µ0 + εt : t ∈ [0, s)

µ1 + εt : t ∈ [s, T ]
, (2)

where µ1 > µ0. This model has a structural break over the interval [0, T ] occurring at time s. Clearly, one

could generalize equation (2) to incorporate multiple structural breaks, but the analysis would be funda-

mentally unchanged. The first thing to note is that s is a deterministic point in time. This means that, to

use this model, one must exogenously specify the point, or points, in time where the mean in this process

shifts back and forth between µ0 and µ1. This is not necessarily a problem unless, of course, one would like

to use this model to forecast future outcomes. If that is the case, then it is not entirely obvious how one

should proceed. A very reasonable alternative would be to treat the shift in mean as a random event. One

must then specify the probability distribution that governs the shift from µ0 to µ1.

To accommodate the movement to a stochastic mean, we need more structure. To accomplish this, we

define a new random variable, St. This random variable takes on one of two integer values, depending on

the state of the process. More precisely, we have

St =

 0 : process in state 0

1 : process in state 1
. (3)

This would permit us to rewrite the model as

yt − φyt−1 = µSt + εt, (4)

8
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for all t ∈ [0, T ] where,

µSt =

 µ0 : St = 0

µ1 : St = 1
, (5)

and,

εt ∼ N (0, σ2). (6)

This is quite a good start, but it introduces a new challenge. Namely, we need to find some way to

describe our unobserved state variable, St. Hamilton (1989) solved this problem by permitting St to follow

a Markov chain. The theory of Markov chains is quite rich but, fortunately for our current application, we

need understand only a handful of their properties. In section 3.1, therefore, we will briefly consider some

basic facts about Markov chains to facilitate our discussion.

3.1 Some Markov chain background

A Markov chain is a discrete-state stochastic process that can be defined in either continuous or discrete

time.9 Our application will focus on discrete-time Markov chains. Conceptually, this class of processes

is similar to the more general (and subtle) theory relating to continuous-time, continuous-state Markov

processes.10 To get started, let us consider an integer-valued, time-indexed sequence of random variables,

{St, t ∈ {1, ..., T}. Moreover, the probability that St takes on a value j given that its current value is i

depends on that previous value alone. That is,

P[St = j | St−1 = i, St−2 = k, ...] = P[St = j | St−1 = i], (7)

= pij .

This is the seminal property of a Markov chain. Loosely speaking, it is a process that has a very limited

memory. At any given point in time, the distribution of outcomes in the subsequent state depends only on

its current state. As stated in equation (7), we let pij represent the probability that the process finds itself

in state i given that it previously found itself in state j. These are called the transition probabilities of our
9This discussion follows, in more or less equal parts, from the excellent analysis in Hamilton (1994), Brémaud (1999), and

Meyn and Tweedie (1993). This section is, by construction, fairly terse. Appendix A, however, expands somewhat on these

results.
10The theory of Markov chains can also be presented in a measure-theoretic framework. Nevertheless, as our use of these

processes will be very straightforward, this extra mathematical machinery does not seem necessary or even desirable.
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Markov and we define them in the following matrix form,

{pij}i,j=1,2,...,N︸ ︷︷ ︸
Set of

transition
probabilities

≡


p11 p21 · · · pN1

p12 p22 · · · pN2

...
...

. . .
...

p1N p2N · · · pNN


︸ ︷︷ ︸

Transition matrix: P

(8)

where,

pi1 + pi2 + · · ·+ piN =
N∑
j=1

pij = 1 (9)

for all i = 1, ..., N . Or, more simply, the columns of the transition matrix must sum to unity.

One key feature of Markov chains is that the probability that an observation from state i will be followed,

in m periods, by an observation from state j is given by the jth row and ith column from the matrix Pm.11

Or,

P[St+m = j | St = i] = p̄ij , (10)

where,

Pm =


p̄11 · · · p̄i1 · · · p̄N1

p̄12 · · · p̄i2 · · · p̄N2

...
...

...
. . .

...

p̄1N · · · p̄iN · · · p̄NN

 . (11)

This feature of Markov chains allows us to describe the future dynamics of the process using only its transition

matrix. Additional details on why this is actually true are given in Appendix A.

A Markov chain is termed irreducible if all of its states can be reached for any given starting point. In the

simple first-order, two-state Markov chains that we will be examining, this means that every element in the

transition matrix lies in the open interval, (0, 1). To see this more clearly, consider the following transition

matrix,

P =

0.75 0

0.25 1

 . (12)

The problem here is that once our stochastic process enters into the second state it will never exit. This

is termed an absorbing state and it is not a desirable property in a two-state model of the macroeconomy.
11This notation—which we have borrowed from Hamilton (1994)—is the opposite from the standard for matrix algebra and

could potentially lead to some confusion.
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A Markov chain that does not have any absorbing states is, in fact, irreducible. In a sense, these are well-

behaved Markov chains. If we desire irreducibility in our first-order, two-state setting, we merely require the

following inequalities to hold,

P[St = 0 | St−1 = 0] and P[St = 1 | St−1 = 1] < 1. (13)

One additional feature of a Markov chain worth reviewing relates to the first property we examined.

Specifically, one might reasonably wonder whether, as m → ∞, does the transition matrix, Pm, become

stable? The answer to this rather vague question is yes. Slightly more formally, an irreducible Markov chain

eventually converges to a limiting distribution.12 For an N -state Markov chain the N × 1 vector of ergodic

(or steady-state) probabilities, denoted π, satisfies the following,

Pπ = π. (14)

It is the vector, π, that describes the steady-state probabilities of a Markov chain. Moreover, we have the

following result,

lim
m→∞

Pm = π~1, (15)

where ~1 is a 1×N row vector of ones. This result is discussed in Appendix A.

3.2 Hamilton’s (1989) filter

We are now armed with the necessary theory to examine the hidden-Markov model employed by Hamilton

(1989). Specifically, Hamilton suggested an AR(n) model with the following form,

yt − µSt =
n∑
i=1

φi
(
yt−i − µSt−i

)
+ εt, (16)

where,

εt ∼ N
(
0, σ2

)
. (17)

We also assume that these error terms are independent. The mean of this process depends on the outcome

of an unobservable state variable, St, that is defined as,

St =

 0 : economy is in a recession,

1 : economy is in an expansion.
(18)

12Technically, a Markov chain is termed ergodic if one of the eigenvalues of the transition matrix is unity and all other

eigenvalues lie inside the unit circle.
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We further assume that this unobservable state variable, St, is governed by a straightforward, first-order,

two-state Markov chain. Thus, the transition matrix is defined as,

P =

 q 1− p
1− q p

 , (19)

where,

P[St = 1 | St−1 = 1] = p, (20)

P[St = 1 | St−1 = 0] = 1− q, (21)

P[St = 0 | St−1 = 0] = q, (22)

P[St = 0 | St−1 = 1] = 1− p. (23)

Observe that the columns of our transition matrix sum to unity and that p, q < 1. Our Markov chain is

consequently both irreducible and ergodic. We define our mean as,

µSt = µ0(1− St) + µ1St. (24)

Thus, we have now written out the model in its entirety. Conceptually, it is straightforward. The complexity

of the technique arises from the parameterization of the model. Indeed, we desperately require an algorithm

to estimate the parameter vector,

θ =
[
µ0 µ1 σ2 φ1 · · · φn p q

]T
. (25)

Most, if not all, of the estimation complexity arises because we do not actually observe St.13 Hamilton’s

(1989) contribution was to construct a filtering algorithm to iterate through the observations ({yt, t = 1, ..., T})
while making and updating inferences about the probability of being in a given state. As we do not observe

the underlying state variable, the filtering framework is quite natural. Indeed, the estimation algorithm is

similar in spirit to the Kalman filter. Nonetheless, a number of differences stem from the non-linearity of

the system.

In this discussion, we provide a highly detailed exposition of the steps involved in building the maximum-

likelihood function required to determine the parameter set. The heavy detail aims to add as much clarity

as possible into the algorithm. We also use a key component of this method in the actual construction of

our model. As such, a good understanding of the estimation algorithm is crucial.

For the purposes of expositional and notational clarity, we restrict our attention to an AR(1) process.

We can, of course, generalize this approach to handle an AR(p) process or an rth-order, M -state, Markov
13If St were observable, then this would all collapse into a simple time-series regression with an indicator variable governing

the transition from one regime to the next.
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chain. The extra generality, however, is foregone as it adds little to our understanding. Indeed, we will see

that a clear presentation is challenging enough even in the simplest setting. The discussion here follows the

development in Hamilton (1989, 1990, 1994) and Kim and Nelson (1999).

Our goal is to optimize the following joint density,

f(y1, y2, ..., yT ; θ). (26)

The difficulty is that we cannot work with the joint density in this form. To solve this problem, we rely on

the independence of our error terms in equation (17) to rewrite equation (26) as,

f(y1, y2, ..., yT ; θ) = f(y1 | F0; θ)f(y2 | F1; θ) · · · f(yT | FT−1; θ), (27)

=
T∏
t=1

f(yt | Ft−1; θ).

This yields a more analytically convenient log-likelihood function and allows us to define our optimization

problem as,

max
θ

T∑
t=1

ln (f(yt | Ft−1; θ))︸ ︷︷ ︸
`(θ)

. (28)

The first step in our estimation algorithm is to initialize the log-likelihood function at zero,

`(θ) = 0. (29)

Recall that we have a time series, yt, that is observed at t ∈ {1, ..., T}. The second step involves specifying

the unconditional probabilities of being in each state at time 0.14 For generality, we specify these steady-state

probabilities as,

P[S0 = 1 | F0] = π, (30)

P[S0 = 0 | F0] = 1− π, (31)

where,

Ft
4
= σ{yt, yt−1, ..., y1}, (32)

is the σ-algebra generated by the output growth process. It is important to note that St is not in our

filtration. We are, in fact, making inferences about the underlying state of the economy conditional on the

information generated by the path of economic output (i.e., Ft).
14We derive these ergodic probabilities for an irreducible Markov chain in Appendix A.
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Our goal is to make an inference about the probability of y1 taking on a given value. If we knew the

state of the regime we could write down the conditional density with confidence, but as it is unknown we

must condition on the probability of it being in a given state. This means, in an algorithmic sense, that we

compute the contribution of y1 to the log-likelihood function by reweighting the conditional density of being

in either state by the appropriate joint probability. We must, therefore, compute the set of joint probabilities.

They are determined as follows,

P[S1 = 1, S0 = 1 | F0] = P[S1 = 1 | S0 = 1]︸ ︷︷ ︸
equation (20)

P[S0 = 1 | F0]︸ ︷︷ ︸
equation (30)

, (33)

P[S1 = 1, S0 = 0 | F0] = P[S1 = 1 | S0 = 0]︸ ︷︷ ︸
equation (21)

P[S0 = 0 | F0]︸ ︷︷ ︸
equation (31)

, (34)

P[S1 = 0, S0 = 0 | F0] = P[S1 = 0 | S0 = 0]︸ ︷︷ ︸
equation (22)

P[S0 = 0 | F0]︸ ︷︷ ︸
equation (31)

, (35)

and,

P[S1 = 0, S0 = 1 | F0] = P[S1 = 0 | S0 = 1]︸ ︷︷ ︸
equation (23)

P[S0 = 1 | F0]︸ ︷︷ ︸
equation (30)

. (36)

As discussed, these equations serve as the inputs into the construction of the conditional density of y1.

The expression for f(y1 | F0) merely follows from the law of total probability.

f(y1 | F0) =
1∑
i=0

1∑
j=0

f(y1 | S1 = i, S0 = j,F0)P[S1 = i, S0 = j | F0],︸ ︷︷ ︸
equations (33)-(36):

Weighting terms

(37)

=
1√

2πσ2
e−(

y1−µ1−φ1(y0−µ1))2

2σ2 P[S1 = 1, S0 = 1 | F0]︸ ︷︷ ︸
equation (33)

+

1√
2πσ2

e−(
y1−µ1−φ1(y0−µ0))2

2σ2 P[S1 = 1, S0 = 0 | F0]︸ ︷︷ ︸
equation (34)

+

1√
2πσ2

e−(
y1−µ0−φ1(y0−µ0))2

2σ2 P[S1 = 0, S0 = 0 | F0]︸ ︷︷ ︸
equation (35)

+

1√
2πσ2

e−(
y1−µ0−φ1(y0−µ1))2

2σ2 P[S1 = 0, S0 = 1 | F0]︸ ︷︷ ︸
equation (36)

.

This permits us to update the log-likelihood,

`(θ) = `(θ) + ln

 f(y1 | F0)︸ ︷︷ ︸
equation (37)

 . (38)
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The additive form of the likelihood function arises from the assumption of independently distributed error

terms in equation (17).

We are now at the last step in the iteration. At this point, y1 is observed and is subsequently added to

our filtration. Furthermore, we wish to update equations (30) and (31) to aid us in the computation of the

weighting probabilities in the next iteration. This is analagous to the updating step in the Kalman filter.

These updated probabilities are termed the filtered probabilities. In fact, it is this quantity that we will use

in section 4 to link the term structure of interest rates and the business cycle. We will consider each in turn,

P[S1 = 1 | F1] = P[S1 = 1, S0 = 1 | F1] + P[S1 = 1, S0 = 0 | F1], (39)

=
f(y1, S1 = 1, S0 = 1 | F0)

f(y1 | F0)︸ ︷︷ ︸
equation (37)

+
f(y1, S1 = 1, S0 = 0 | F0)

f(y1 | F0)︸ ︷︷ ︸
equation (37)

,

=

(
1√

2πσ2 e
−(

y1−µ1−φ1(y0−µ1))2

2σ2

)
P[S1 = 1, S0 = 1 | F0]∑1

i=1

∑1
j=1 f(y1 | S1 = i, S0 = j,F0)P[S1 = i, S1 = j | F0]

+(
1√

2πσ2 e
−(

y1−µ1−φ1(y0−µ0))2

2σ2

)
P[S1 = 1, S0 = 0 | F0]∑1

i=1

∑1
j=1 f(y1 | S1 = i, S0 = j,F0)P[S1 = i, S1 = j | F0]

,

and,

P[S1 = 0 | F1] = P[S1 = 0, S0 = 0 | F1] + P[S1 = 0, S0 = 1 | F1], (40)

=
f(y1, S1 = 0, S0 = 0 | F0)

f(y1 | F0)︸ ︷︷ ︸
equation (37)

+
f(y1, S1 = 0, S0 = 1 | F0)

f(y1 | F0)︸ ︷︷ ︸
equation (37)

,

=

(
1√

2πσ2 e
−(

y1−µ0−φ1(y0−µ0))2

2σ2

)
P[S1 = 0, S0 = 0 | F0]∑1

i=1

∑1
j=1 f(y1 | S1 = i, S0 = j,F0)P[S1 = i, S1 = j | F0]

+(
1√

2πσ2 e
−(

y1−µ0−φ1(y0−µ1))2

2σ2

)
P[S1 = 0, S0 = 1 | F0]∑1

i=1

∑1
j=1 f(y1 | S1 = i, S0 = j,F0)P[S1 = i, S1 = j | F0]

.

We now move to the next time step and repeat. The complete algorithm for the construction of the log-

likelihood function is outlined below. We use a standard non-linear optimization algorithm to maximize this

function.

Step 1 The first step is to compute the weighting probabilities as,

P[St = i, St−1 = j | Ft−1] = P[St = i | St−1 = j]P[St−1 = j | Ft−1], (41)

for i, j = 0, 1.
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Step 2 Using the results of the previous step, we can compute the reweighted conditional density and add

it to our log-likelihood function in the following fashion,

`(θ) = `(θ) + ln (f(yt | Ft−1) (42)

where,

f(yt | Ft−1) =
1∑
i=0

1∑
j=0

f(yt | St = i, St−1 = j,Ft−1)P[S1 = i, S1 = j | Ft]. (43)

Step 3 Finally, we observe yt. We can now update our filtration, which is defined in equation (32), and the

second term in the weighting probabilities computed in the first step. This has the following general

form,

P[St = i | Ft] =
1∑
j=0

P[St = i, St−1 = j | Ft−1], (44)

=
1∑
j=0

f(yt | St = i, St−1 = j,Ft−1)P[St = i, St−1 = j | Ft−1]
f(yt | Ft−1)

.

for i = 0, 1.

Step 4 Increment t and repeat steps 1 to 3 until the end of the data sample.

This algorithm is used to determine a parameter set that is consistent with a given set of historical data.

Given the parameter set, it would be useful to be able to determine the probability that a given historical

period was in recession or expansion. This is possible, but it requires an additional algorithm for its com-

putation. That is, one must compute what are termed smoothed probabilities. The original approach for the

computation of these values, suggested by Hamilton (1989), is quite involved. Fortunately, Kim (1994) offers

a substantially abridged methodology for the computation of these quantities.

3.3 Kim’s (1994) smoothing algorithm

The idea behind smoothing is that, instead of using only Ft to make inferences about St, we use the entire

sample. More specifically, we use the filtration generated by the entire sample to compute,

P[St = j | FT ], (45)

where t = 1, ..., T . To determine these probabilities, we need to work backwards towards the terminal date

using the updated and forecast weighted probabilities that we computed in the filter as well as the transition
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probabilities. Consider the following,

P[St = j | FT ] =
1∑
k=0

P[St = j, St+1 = k | FT ], (46)

=
1∑
k=0

P[St+1 = k | FT ]P[St = j | St+1 = k,FT ],

=
1∑
k=0

P[St+1 = k | FT ]P[St = j | St+1 = k,Ft],︸ ︷︷ ︸
This holds approximately.

See pseudo-proof

below.

=
1∑
k=0

P[St+1 = k | FT ]P[St = j, St+1 = k | Ft]
P[St+1 = k | Ft]

,

=
1∑
k=0

P[St+1 = k | FT ]P[St = j | Ft]P[St+1 = k | St = j]
P[St+1 = k | Ft]

,

for j = 0, 1. The important question in the derivation of the previous expression is how the following two

expressions are equivalent,

P[St = j | St+1 = k,FT ] ?= P[St = j | St+1 = k,Ft]. (47)

In actual fact, equation (47) is not true. It is nevertheless a reasonable approximation that follows from the

Markov property.15 Consider the following definition,

~yt+1,T
4
=
[
yt+1 yt+2 · · · yT

]
. (48)

The heart of the issue relates to the approximate equality of the two subsequent density functions,

f (~yt+1,T | St+1 = k, St = j,Ft) ≈ f (~yt+1,T | St+1 = k,Ft) . (49)

The point is that conditioning on {St+1 = k, St = j,Ft} is approximately equivalent to conditioning on

{St+1 = k,Ft}. Essentially, assuming equation (49) to be true implies that if we somehow received infor-

mation about St+1 and were told Ft, then we would have all the information we need about St. Were this

the case, therefore, yt+1 would not provide any new information about St above and beyond that given by

St+1 and Ft. This assumption is the key element in the derivation of equation (47). To see the exact logic,
15Equation (47) holds with strict equality in the Hamilton (1989) model when no lags of yt are introduced.
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consider the following manipulation, which assumes that equation (47) holds with equality,

Left-hand side of equation (47) = P[St = j | St+1 = k,FT ], (50)

=
f(St = j, ~yt+1,T | St+1 = k,Ft)

f(~yt+1,T | St+1 = k,Ft)
,

=
f(St = j | St+1 = k,Ft)f(~yt+1,T | St+1 = k, St = j,Ft)

f(~yt+1,T | St+1 = k,Ft)
,

=
f(St = j | St+1 = k,Ft)

By equation (49)︷ ︸︸ ︷
f(~yt+1,T | St+1 = k,Ft)

f(~yt+1,T | St+1 = k,Ft)
,

= f(St = j | St+1 = k,Ft) = Right-hand side of equation (47).

As a final note, we look at the steps involved in computing the set of smoothed probabilities for a

two-period example (i.e., T = 2).16

Step 1 At time 2 (i.e., let t = T ), we already have the desired probabilities from the Hamilton filter. That

is,

P[ST = 0 | FT ] = P[St = 0 | Ft], (51)

= P[S2 = 0 | F2],

and,

P[ST = 1 | FT ] = P[St = 1 | Ft], (52)

= P[S2 = 1 | F2].

Step 2 We now move backward in time to period 1 (i.e., let t = T − 1) and use equation (46) to compute

P[S1 = 1 | F2],

P[S1 = 1 | F2] =

equation (52)︷ ︸︸ ︷
P[S2 = 1 | F2] ·P[S1 = 1 | F1] · P[S2 = 1 | S1 = 1]

P[S2 = 1 | F1]
+ (53)

equation (51)︷ ︸︸ ︷
P[S2 = 0 | F2] ·P[S1 = 1 | F1] · P[S2 = 0 | S1 = 1]

P[S2 = 0 | F1]
,

16Please note that these computations are performed using the parameter set estimated using the previously discussed

Hamilton (1989) non-linear filtering algorithm.
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and, in an exactly analogous way, we compute P[S1 = 0 | F2],

P[S1 = 0 | F2] =

equation (51)︷ ︸︸ ︷
P[S2 = 0 | F2] ·P[S1 = 0 | F1] · P[S2 = 0 | S1 = 0]

P[S2 = 0 | F1]
+ (54)

equation (52)︷ ︸︸ ︷
P[S2 = 1 | F2] ·P[S1 = 0 | F1] · P[S2 = 1 | S1 = 0]

P[S2 = 1 | F1]
.

That completes the iteration. In a case where T > 2, we would set t = T − 2 and repeat step 2. This

would, of course, continue until all of the required smoothed probabilities are calculated.

3.4 Results

In this section, we apply the previously described algorithms to the data. We use two different quarterly

time series to approximate Canadian output spanning the period from the first quarter of 1961 to the second

quarter of 2001. The two series include expenditure-based GDP and industrial production (or rather, GDP

at factor cost). The log differences of these two series are summarized in Figure 3.

Figure 3: Output Growth Series: This figure summarizes the log differences of two different quarterly output

series: GDP and industrial production.
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In our analysis, we consider versions of Hamilton’s (1989) model with autoregressive lags of n = 1, ..., 4.

The actual estimation of Hamilton’s (1989) model is more complicated for an AR process where n > 1. This

is the equivalent of implementing a higher-order Markov chain. One can, however, transform an nth order

Markov process with m states into a first-order Markov process with mn states. This allows us to use the
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previously described estimation process to determine the optimal parameter set.17

Applying the model described in equations (16) to (24) and its associated estimation algorithm yields the

parameter estimates described in Table 1. Let us first consider the transition matrix. One would expect that

an expansion would exhibit a relatively higher degree of persistence than a recession. That is, we believe

that there is a substantial probability that the economy will remain in an expansion, given that it is in

an expansion during the current period. Encouragingly, both data series indicate that the probability of

persistence in an expansionary period is quite high. In particular, p > 0.95 for both the GDP and industrial

production data. The recessionary states, conversely, appear to have relatively less persistence compared

with the expansionary states. We observe that q = 0.86 when industrial production data are used and

q = 0.53 when GDP data are used. Overall, the results for the estimation of the transition matrix seem to

be quite reasonable in light of our understanding of the business cycle.

Table 1: Parameter Estimates: This table outlines the parameters for the AR(4) models using both quarterly
GDP and industrial production data for the Hamilton (1989) constant transition probability model.

Industrial production data GDP dataParameter
Estimate Std. error Estimate Std. error

p = P[St = 1|St−1 = 1] 0.9800 0.0170 0.9592 0.0198
q = P[St = 0|St−1 = 0] 0.8656 0.0972 0.5348 0.1437

φ1 0.3976 0.0905 0.1773 0.0687
φ2 -0.0188 0.0909 0.4735 0.0844
φ3 0.1023 0.0866 0.3068 0.0658
φ4 -0.1458 0.0801 -0.0965 0.0684
σ 0.6225 0.0383 0.7247 0.0481
µ0 0.1121 0.2569 0.2818 0.4989
µ1 0.9697 0.0938 2.1261 0.4143

The mean levels for output growth also coincide with our prior beliefs about the macroeconomic cycle.

Specifically, we would expect the mean growth rate in an expansionary period to be positive and on the

order of 2 per cent. Conversely, a recessionary period should be typified by very low or negative output

growth rates. This is evident in the results. In particular, µ0 = 0.28 per cent and µ1 = 2.12 per cent when

using the GDP data to estimate Hamilton’s (1989) model. A similar, if somewhat less pronounced, trend is

evident in the industrial production data.

One useful test of the success of a given parameterization and number of lags is the smoothed probabilities.

Loosely speaking, the Canadian economy was in recession during the early part of the 1970s, 1980s, and

1990s. We would hope that our model parameterizations would indicate, using the smoothed probabilities,
17We wish to thankfully acknowledge the use of a base set of computer routines as described in Kim and Nelson (1999).

These routines served as the basis for the estimation work in this section.
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that the Canadian economy was indeed in a recession during these periods. Figure 4 describes Kim’s (1994)

smoothed probabilities for n = 1, ..., 4 using the GDP data, while Figure 5 does the same for the industrial

production data. The AR(4) model using the GDP data appears to do the best job of highlighting historical

recessions. That is, it does a reasonable job of indicating that the Canadian economy is in a recession

during the previously mentioned periods. As a consequence, we have elected to use the parameter estimates

stemming from the GDP data. In addition to the more reasonable smoothed probabilities, we feel that the

parameter estimates appear to be more reasonable.

Figure 4: Smoothed Probabilities (GDP Data): This graph describes the probability—at each given point

in time in the sample—of actually being in a recession following Hamilton (1989). In this model, we consider one to

four lagged values of GDP data as a predictor variable.
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The smoothed probabilities of recession are quite binary. In other words, the probability of recession is

typically either quite close to zero or quite close to one, and it does not tend to take intermediate values in

the unit interval. It is much the same with filtered probabilities of recession; as one might imagine, these

are quite highly correlated quantities. The reason for this binary behaviour of the smoothed and filtered

probabilities is the non-continuous nature of the underlying business cycle model. The economy does not

gradually ease into a recession, but rather is assumed to transition from expansion into recession over the

course of a single time step. It is important to keep this feature of the smoothed and filtered probabilities

in mind as it is responsible for one of the drawbacks of our joint model.
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Figure 5: Smoothed Probabilities (Industrial Data): This graph describes the probability—at each given

point in time in the sample—of actually being in a recession following Hamilton (1989). In this model, we have used

one to four lagged values of industrial production data as the predictor variables.
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One potential drawback with our use of Hamilton’s (1989) model is the fact that the transition probabil-

ities are constant through time. A number of extensions to Hamilton’s (1989) model address this problem

by permitting the transition probabilities to be a function of some other economic information, such as con-

sumer confidence or the steepness of the term structure of interest rates.18 The consequence is a model that

permits time-varying transition probabilities. We seriously considered using these more descriptive models

and a more detailed examination of their properties is presented in Appendix D. Ultimately, however, we

elected to remain with the constant-parameter Hamilton (1989) model, primarily because the time-varying

models require the simulation of an additional macroeconomic variable, or variables, to construct a sample

path for the business cycle. We felt that it was more important to preserve the parsimony of our model—

through the constant specification of transition probabilities—than to permit the transition matrix to vary

through time.
18This extension originated with Filardo (1993).
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3.5 Some practicalities

We have worked our way through a substantial amount of theory regarding Markov chains and considered the

model used by Hamilton (1989) to model the evolution of output growth. In our applicaton to debt strategy,

however, we need to forecast future states of the economy—over some predetermined time interval—and

use those states to determine interest rate behaviour and the government’s surplus/deficit position. The

question then becomes how to actually simulate a sample path for our Markov chain process. The answer

is relatively simple. At each point in time, the probability of transitioning from one state to the next is

merely the outcome of a Bernoulli trial with the probability of success determined from the transition matrix.

We can replicate a series of Bernoulli trials quite simply by using uniform random variates.19 To see more

clearly how this algorithm works, let us consider a concrete example. This will also permit us to reinforce

the concepts discussed in section 3.1. First, we begin with the estimated transition probabilities outlined in

Table 1,

P[St = 0 | St−1 = 0] = q = 0.53, (55)

P[St = 1 | St−1 = 1] = p = 0.96.

These transition probabilities, in turn, yield the following transition matrix,

P =

 q 1− p
1− q p

 =

0.53 0.04

0.47 0.96

 . (56)

There are, in fact, only two steps in the algorithm and they are very similar. To see exactly what is going

on, we will consider each in detail.

Step 1 While each step is similar, the first step is somewhat different, in that we must find a way to

launch the process. The most reasonable way to approach this is to use the ergodic, or unconditional

probabilities. To obtain these values, we recall equation (15) and apply the result from equation (91)
19There are alternative methods—for example, see Fishman (1995, page 235)—but this approach is by far the simplest and

is not terribly computationally expensive.
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in Appendix A,

lim
m→∞

Pm = A lim
m→∞

(Λm)A−1, (57)

=

−0.7071 −0.0848

0.7071 −0.9964

 lim
m→∞

0.49 0

0 1

m −1.3033 0.1109

−0.9249 −0.9249

 ,
=

−0.7071 −0.0848

0.7071 −0.9964

0 0

0 1

−1.3033 0.1109

−0.9249 −0.9249

 ,
=

0.0784 0.0784

0.9216 0.9216

 ,
=

0.0784

0.9216

[1 1
]
,

= π~1.

The consequence is that the unconditional probabilities for this example are,

P[S1 = 0 | F0] =
1− 0.96

2− 0.53− 0.96
= 0.0784, (58)

P[S1 = 1 | F0] =
1− 0.53

2− 0.53− 0.96
= 0.9216.

Thus, we are finally able to write down the approach to determining the initial state of our Markov

chain for a given simulation. Select the following standard uniform random variate, U1 ∼ U [0, 1], and

use the following logic, outlined here in pseudo-code,

if U1 ∈ [0, 0.0784] then

S1 = 0

else if U1 ∈ (0.0784, 1] then

S1 = 1

end

This is the equivalent of conducting a Bernoulli trial with probability of success equal to 0.0784.

Step 2 The next task is to determine S2, which will, of course, depend on the value of our Markov chain

at S1. The algorithm we intend to employ will use the following control structure and the transition

matrix. To begin, we select another standard uniform random variate, U2 ∼ U [0, 1], and again use

pseudo-code,

if S1 = 0 and U2 ∈ [0, 0.53] then

S2 = 0
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else if S1 = 0 and U2 ∈ (0.53, 1] then

S2 = 1

else if S1 = 1 and U2 ∈ [0, 0.96] then

S2 = 1

else if S1 = 1 and U2 ∈ (0.96, 1] then

S2 = 0

end

We need only to repeat the second step until the end of the forecast period and it can be extended to the

general two-state Markov chain model quite simply.20

4 The Model

To this point, we have worked through a fairly well-known model that describes the evolution of the business

cycle. We can now construct our link between the term structure of interest rates and the financial position

of the government. We will begin with the term structure of interest rates because it is the most complicated

aspect of the model.

4.1 The term structure

The term-structure model currently used in the Government of Canada’s debt strategy analysis is a two-

factor Cox-Ingersoll-Ross (CIR) model.21 The class of affine term-structure models and its application to

debt strategy is described in detail in Bolder (2001). We will, however, briefly introduce the basics of

this model. The underlying state variables, y1 and y2, that drive the dynamics of the evolution of the

term structure of interest rates are assumed to follow two independent continuous-time, continuous-state,
20In fact, the general case is as follows,

if St−1 = 0 and U2 ∈ [0, p] then

St = 0

else if St−1 = 0 and U2 ∈ (p, 1] then

St = 1

else if St−1 = 1 and U2 ∈ [0, q] then

St = 1

else if St−1 = 1 and U2 ∈ (q, 1] then

St = 0

end
21These models originated with the path-breaking work of Cox, Ingersoll, and Ross (1985a,b).
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stochastic processes of the following form,

dy1(t) = κ1

(
θ1 −

(
κ1 + λ1

κ1

)
y1(t)

)
dt+ σ1

√
y1(t)dW1(t), (59)

dy2(t) = κ2

(
θ2 −

(
κ2 + λ2

κ2

)
y2(t)

)
dt+ σ2

√
y2(t)dW2(t), (60)

where {Wi(t), t ∈ [0,∞)}i=1,2 are independent standard, scalar Wiener processes defined on the filtered

probability space, {Ω,F ,P}. The parameters λi, i = 1, 2 represent the market price of risk for each state

variable. Through an arbitrage argument, one can construct a bond price function, P (t, s) for s ≥ t. The

variable t is interpreted as the current point in time, while s represents the term to maturity of an arbitrary

zero-coupon bond. For our purposes, we can easily restrict our attention to values of s in the interval
[

1
12 , 30

]
.

The bond price function is a deterministic function of the state variables and is defined as follows,

P (t, s, y1(t), y2(t)) = e
∑2
i=1(Ai(t,s)−Bi(t,s)yi(t)). (61)

The functions Ai(t, s) and Bi(t, s) have the underlying deterministic structure,

Bi(t, s) =
2(eγi(s−t) − 1)

ai(eγi(s−t) − 1) + 2γi
, (62)

Ai(t, s) = ln

( 2γie
ai(s−t)

2

ai(eγi(s−t) − 1) + 2γi

) 2κiθi
σ2
i

 ,
where,

ai = γi + κi + λi,

and,

γi =
√

(κi + λi)2 + 2σ2
i ,

for i = 1, 2. This bond price function is then transformed into the zero-coupon term structure of interest

rates by,

z(t, s) = − lnP (t, s)
s− t

=
2∑
i=1

−Ai(t, s)
s− t

+
Bi(t, s)
s− t

yi(t). (63)

Using the estimation procedure, described in Bolder (2001), we obtain the parameter values of this model.

They are summarized in Table 2.22 We generate a single term-structure sample path and decompose it into

a number of components in Figure 6. We will use this decomposition to better understand the fundamental

properties of this model. The first quadrant of Figure 6 illustrates the actual evolution of the term structure

over a one-year period; the second quadrant outlines the state variable dynamics; the third quadrant traces
22Please note that these parameter estimates where slightly altered to ensure that the so-called Feller condition would hold.

When this condition is satisfied, zero-coupon rates generated by this model cannot be negative.
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the movement of the three-month rate, the 10-year rate, and the spread between them; and the fourth

quadrant describes the factor loadings outlined in equation (63).23

Figure 6: A Decomposition of the Two-Factor CIR model: This figure decomposes a single sample path

for the two-factor CIR model. It includes the evolution of the underlying state variables, the associated short and long

zero-coupon rates, and the factor loadings—B1(t,s)
s−t , B2(t,s)

s−t , and −A1(t,s)−A2(t,s)
s−t )—used in equation (61) to construct

the bond price function.
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To this point, we have been rather vague about the identity of the state variables, y1(t) and y2(t). We can,

however, infer their identity by using the decomposition in Figure 6, the parameters described in Table 2,

and the type of analysis presented in Geyer and Pichler (1998) and de Jong (2000). In particular, we observe

that the first state variable exhibits strong mean reversion (κ1 = 0.993) and sizable variability (σ1 = 0.101).

It also has a downward-sloping factor loading
(
B1(t,s)
s−t

)
. This implies that our first state variable does not

impact all zero-coupon yields in a similar fashion. Finally, we observe that y1(t) is highly correlated with

the spread between the short, three-month interest rate and the longer-term, 10-year rate. Based on this

evidence, we may conclude that the first state variable can be identified as the slope, or steepness, of the

term structure of interest rates.

The second state variable, conversely, demonstrates weak mean reversion (κ2 = 0.065), is relatively less

variable (σ2 = 0.060), and is highly correlated with the 10-year zero-coupon rate. Moreover, the factor
23We set the time step in the generation of the graphics in Figure 6 at approximately one day.
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loading
(
B2(t,s)
s−t

)
is quite flat across maturities. This means that the second state variable influences all

zero-coupon bond maturities in, more or less, the same manner. As a consequence, we interpret the second

state variable as the level of interest rates.

The interpretation of the state variables of a two-factor affine term-structure model as the level and slope

of the term structure is standard. This realization originated in the literature with the work of Litterman and

Scheinkman (1991). They demonstrated, using an eigenvalue decomposition of zero-coupon bond returns,

that the majority of term-structure variability can be explained by three orthogonal factors: level, slope,

and twist. Of these three factors, the level and slope are the most important in summarizing term-structure

evolution.

Our interest in this paper is in the steepness of the term structure of interest rates. In particular, the

steepness of the term structure relates to the term premium demanded by investors for holding bonds of

longer maturities. One can, in fact, derive the form of the term premium assumed by the two-factor CIR

model.24 Let us denote the instantaneous risk premium as θ(t, s) for a bond with term to maturity of s

years. It has the following form,

θ(t, s) = r(t)−
n∑
i=1

λiσi
√
yi(t)Bi(t, s). (64)

The derivation of this expression follows de Jong (2000) and is outlined in greater detail in Appendix C.25

In equation (64), we know that the instantaneous standard deviation of our state variables (σi
√
r(t)) and

the function Bi(t, s) are both strictly positive. This implies that, for the term premium to be positive, we

require negative market price of risk parameters. Or, at least, we require that one state variable have a

market price of risk parameters that is sufficiently large and negative to offset a positive market price of risk

parameter in the other state variable. As shown in Table 2, both of our market price of risk parameters are

negative.

In this particular exercise, the most important model parameter is λ1. As previously discussed, the

strongly mean-reverting, highly variable first state variable represents movement in the steepness of the term

structure. Moreover, from equation (64), the parameter that exerts primary control over the term premium

is λ1. Clearly, both market price of risk parameters (λ1 and λ2) influence the steepness of the term structure,

but λ1 is the most important and thus the most efficient candidate for our analysis.26 As the absolute value

of the typically negative λ1 increases in size, the simulated term structure of interest rates will increase in
24The key assumption is that investors have logarithmic utility and thus constant relative risk aversion.
25In actuality, we have not been entirely successful in establishing this derivation. Specifically, there may be a fundamental

error in the derivation or, perhaps less likely, the actual form of equation (64) may not be precisely correct. It will, however,

be some close variation on this form and, as such, this is not a terribly important point.
26This approach would still work with a single-factor model. In that case, the slope of the term structure is influenced by a

single market price of risk parameter.
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Table 2: Parameter Estimates: This table summarizes the parameter set for our two-factor CIR model estimated
using Canadian term-structure data from 1994 to 2001.

Parameter Estimate Std. error
κ1 0.993 0.032
κ2 0.065 0.041
θ1 0.033 0.004
θ2 0.015 0.005
σ1 0.101 0.010
σ2 0.060 0.007
λ1 -0.315 0.038
λ2 -0.103 0.047

steepness. To see this more clearly, consider Figures 7 and 8. In Figure 7, we have set λ1 = −0.315 and

the corresponding term-structure outcomes are upward sloping. In Figure 8, however, we have reduced λ1

to -0.05. The result is a sequence of relatively flat and inverted term structures of interest rates.

Figure 7: A Steep Two-Factor CIR Term Structure: This figure illustrates a single sample path of a two-

factor CIR model with the parameter set specified in Table 2. Observe that it is generally upward-sloping.
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The first market price of risk parameter, therefore, is the key to controlling the relative steepness of the

term structure of interest rates. Using the logic described in Figure 1, we want the term structure of interest

rates to be relatively flat roughly four quarters prior to a recession. That is, we require that λ1 be relatively

small in absolute value over this period. Conversely, the term structure of interest rates should steepen at

the end of a recession.

To see specifically how we intend to govern the steepness of the term structure of interest rates in concert
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Figure 8: A Flat Two-Factor CIR Term Structure: This figure illustrates a single sample path of a two-

factor CIR model with the parameter set specified in Table 2 and the λ1 parameter reset to equal −0.05. Observe

that it is generally flat or inverted.
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with the business cycle, we need to return to Hamilton’s (1989) model. The best way to demonstrate our

suggested approach is to consider an example. First, let us use our previously estimated transition matrix,

P , to generate a quarterly sample path for the business cycle for the next 10 years.27 The actual sequence

of expansionary and recessionary outcomes is illustrated in the first quadrant of Figure 9.

By itself, this sequence of business cycle outcomes is not terribly helpful. Using our estimated AR(4)

model described in equation (16), however, we can generate a sample path for output growth in the economy

that is consistent with the previously generated business cycle outcome. It is important to note that these

output growth outcomes are computed with noise. The relationship between the current state of the economy

and output growth is not deterministic and is subject to small shocks that are orthogonal to the current

macroeconomic state. This output growth realization is summarized in the second quadrant of Figure 9.

Using this sequence of output growth outcomes, we may proceed to compute the associated conditional

probability that the economy is in recession. This is termed the filtered probability and we will denote it as,

Rt = f(yt, yt−1, ..., y0, θ) = P[St = 0 | Ft]. (65)

For an AR(n) model, this probability is conditioned on the previous n output growth lags. In fact, we have

seen this quantity in equation (44) when constructing the non-linear filter used to estimate Hamilton’s (1989)

model. Inspection of equation (44) reveals that it is a function—denoted f in equation (65)—of the current

and past output values and the parameter set. How should we think about this filtered probability? Imagine
27The specific mechanics for generating a sample path from a given transition matrix, P , are described in section 3.5.
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Figure 9: Determining the Steepness of the Term Structure: This figure outlines the steps in the com-

putation of a modified filtered probability series, Λt, that is used in determining the steepness of the term structure

of interest rates.
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that you observe output growth over a number of periods and, using this information, attempt to infer the

state of the economy. If recent observations of output growth were weak relative to previous observations,

you would likely suggest that the probability of currently being in a recession is high. Conversely, if you

observed strong output growth in recent periods, you would infer that the probability of recession was low.

Rt performs exactly this inference for each individual time period. We can think of Rt, in a more technical

sense, as mapping the current output figure and the previous n− 1 output growth lags into a real number:

the probability that the economy is currently in a recession.

Examining Rt in conjunction with the business cycle sample path, as described in the third quadrant of

Figure 9, we observe that it increases contemporaneously with the recessionary periods. Note also that Rt

can rise during non-recessionary periods. This behaviour is caused by a smaller-than-anticipated element

in the output growth series. The possibility of non-recessionary negative shocks to output growth, such as

spikes in oil prices, implies that this is a not-unreasonable feature in the model. It is exactly this process,

Rt, that we wish to use to alter the slope of the term structure of interest rates. The problem is that we

need to shift this measure backwards to capture the forward-looking nature of the term structure of interest
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rates. To accomplish this, we define the following altered random process,

Λt = Rt+τ , (66)

where τ is set to a value from four to six quarters. This is consistent with the literature describing the

forward-looking behaviour of term-structure steepness. This process, Λt, describes the probability of the

economy being in a recession τ quarters from the current point in time. Λt is summarized in the final

quadrant of Figure 9.

Λt is a useful process and forms the basis of our link between the business cycle and the term structure

of interest rates. It allows us to look τ periods into the future and determine the associated probability of

recession in this future period.28 Technically, one cannot peek into the future. In our model, however, the

relationship between the macroeconomy and our other processes is one-directional. That is, the macroecon-

omy impacts the evolution of the term structure of interest rates and the government’s financial position,

but the reverse is not true. As such, we believe it is defensible to condition on the entire business cycle

sample path to construct our term-structure realizations.

The forward-looking nature of Λt allows us to relate the current steepness of the term structure to the

probable future state of the economy τ periods into the future. This is accomplished by defining a new λ1

value in the following manner,

λ̃1,t = (1− Λt)λe1 + Λtλr1, (67)

where λe1 is the market price of risk parameter for expansionary periods and λr1 pertains to recessionary

regimes. Note that λe1 and λr1 have not been estimated but selected, given our parameterization, such that

λe1 implies a relatively steep expected term structure while λr1 leads to a generally flat or inverted term

structure of interest rates. We can interpret λ̃1,t by focusing on Λt. If the probability of recession τ periods

hence is close to zero, then the term structure will have a normal slope as determined by λe1. If, however,

the probability of the economy being in a recession in τ periods is close to one—as measured by Λt—then

the market price of risk parameter will be very close to λr1. This will lead to a generally flat or inverted

term structure of interest for the current period. Ultimately, using this approach, the steepness of the term

structure of interest rates is determined by a convex combination of λe1 and λr1 with parameter, Λt.

The attentive reader might have noticed that the proposed methodology does a reasonable job of creating

flat or inverted term structures prior to recession but does not do as well at generating steep term-structure

outcomes at the end of a recession. The reasons for this are primarily structural. The proposed technique is
28Those familiar with the theory of stochastic processes will have certainly observed that the construction of Λt violates a

host of measurability conditions. Nevertheless, our intentions in this analysis are pragmatic and the relationship between the

business cycle and the term-structure, in our model, is assumed to be one-directional. As a result, we feel that this justifies our

actions.
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not sufficiently flexible to capture the term-structure dynamics in a symmetric fashion. That is, it generates

the requisite flatness τ periods prior to recession, but does not allow for greater-than-average steepness

τ periods prior to a recovery. This is a weakness in our approach. The methodology does allow for the

term structure to be relatively steep τ periods prior to a recovery as compared with τ periods prior to a

recession. While this is a weakness in our technique, we felt that capturing the leading indicator nature of

term-structure steepness prior to recession was most important. Moreover, the modifications we considered

to rectify this drawback were ultimately rejected owing to their increased complexity.

4.2 The government’s financial position

Having worked through the details of our term-structure model and its relationship with our business cycle

model, we turn to consider the government’s financial position. This is accomplished in a relatively straight-

forward manner. Recall that we argued in previous sections that the government’s financial position is a

transformation of the government’s revenues and expenditures at any given point in time. These quanti-

ties are themselves functions of current economic conditions. We could, therefore, model the government’s

revenue and expenditure positions separately and then amalgamate them to determine the government’s

ultimate financial position. We have decided, however, for reasons of conceptual and econometric simplic-

ity, to model the government’s financial position explicitly rather than focus on government revenues and

expenditures.

Figure 10 illustrates the quarterly revenue, expenditure, and financial position data for the Government of

Canada from the first quarter of 1961 until the second quarter of 2001. The source of this data is the Canadian

National Accounts quarterly data release. We can make a number of observations from Figure 10. First, the

revenue and expenditure series are growing steadily over time. They also exhibit very strong covariance.29

Initially, we considered a bivariate linear model of the government’s revenue and expenditure growth using

current and past output growth as well as lagged revenue and expenditure growth observations. While this

model appears to be reasonable in a conceptual sense, we experienced problems with explosiveness of these

series when simulating future outcomes. The result was a sizable number of outcomes with unreasonably

large government surplus or deficit positions over the simulation interval.

Continued inspection of the government financial position series in Figure 10 is less encouraging. Specif-

ically, there appear to be at least three different regimes. The first period, from 1961-75, is characterized by

a balanced budget position, while the second period, running roughly from 1975-97, exhibits a sequence of

deficit positions. The final period, from 1997 to the second quarter of 2001, demonstrates a trend towards

an increasing surplus position. There are, therefore, two fundamental reasons for concern with the use of

the presented historical data to estimate the parameter set for any postulated financial position process.
29The simple sample correlation of these two series is in excess of 0.98.
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Figure 10: Quarterly Government Revenue, Expenditure and Financial Position: This figure out-

lines the evolution—from 1961 until the second quarter of 2001—of the quarterly Government of Canada expenditures,

revenues, and their difference: the government’s financial position.
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The first is that one might reasonably argue that the sequence of observed government financial positions

is not representative of future outcomes. As such, any parameterization would not be terribly useful from

a modelling perspective. Second, in a more statistical sense, these data are not stationary. While there

are a number of definitions of non-stationarity, in this context we are referring to a process with a non-

constant transition density.30 One could use any number of statistical techniques to build a model to fit this

data. Nevertheless, this would not resolve the first problem of non-representativeness of this data to future

outcomes.

We argue, therefore, for the specification of a parsimonious model of the government’s financial position.

Using this simple model with a relatively small set of parameters, the modelling team may calibrate the

parameter set to their expectations of future outcomes. That is, they can decide on the qualitative aspects

of the given model through the selection of model parameters. This framework also permits examination

of the sensitivity of the results to any assumption about the future dynamics of the government’s financial

position. The point is that, in this analysis, the parameters of our financial position process are not estimated

but rather calibrated. The parameters of Hamilton’s (1989) hidden-Markov model and the two-factor affine

term-structure model are actually estimated using historical data.

If we are to build a simple model for the government’s financial position, we need to consider the impor-

tant aspects of this series. In particular, there are rather compelling arguments for mean-reversion in the

government’s financial position over a sufficiently lengthy time interval. That is, we believe that a random
30In Hamilton (1994), this is referred to as strict stationarity.

34



Towards a More Complete Debt Strategy Simulation Framework

macroeconomic shock could move the government’s financial position from its long-term mean value—which

one could legitimately argue to be approximately zero—but that these shocks do not persist over time. This

would suggest that our initial specification, in equation (1), is actually a good place to start. Recall that the

drawback of using this process to describe the government’s financial position was the fact that its evolution

is orthogonal to the current state of the macroeconomy. To rectify this problem, we will slightly modify the

stochastic process suggested in equation (1).

Before we actually describe the model, let us introduce some notation. We denote Ft as the government’s

financial position in period t. In a mathematical sense, we will consider this to be a continuous-time,

continuous-state stochastic process. Operationally speaking, this amounts to the difference between the

government’s revenues and expenditures over a given three-month period. Some may claim that the use of

a continuous-time stochastic process is an inappropriate tool for the modelling of the evolution of quarterly

economic series. These arguments are not without merit. Nevertheless, we feel that this is a convenient and

intuitive manner in which to represent the dynamics of the government’s financial position. Moreover, this

approach is consistent with the nature of the processes used to model the evolution of the term structure of

interest rates.

The model, therefore, that we will use to describe the evolution of the government’s financial position is

a slight modification of the Ornstein-Uhlenbeck process suggested in equation (1). It has the following form,

dF (t) = α(β − F (t))dt+ γṘt + ξdW (t), (68)

where Ṙt is the instantaneous filtered probability of being in a recession at time t. The discrete-time version

of this process was first defined in equation (65).31 Loosely speaking, one can interpret the additional boxed

term γṘt as a randomly occurring jump in the government’s financial position process. More specifically,

the parameter γ is the size of the jump and Ṙt both governs its arrival and rescales its size. That is, the

actual size of the impact on the government’s financial position depends on the magnitude of Ṙt which lies in

the unit interval. We should note, rather emphatically, that this is not a jump diffusion model. Instead, we

are postulating a mean-reverting process for the government’s financial position that incorporates randomly

occurring information about the current economic state.

For clarity, we will discuss each of the model parameters and attempt to reconcile them with our intuition

about the influence of the macroeconomy on the government’s financial position.

Mean reversion (α) This parameter ultimately governs the speed at which surpluses and deficits return

to their long-term mean value (β). In other words, it represents how quickly the government alters

discretionary spending to return to its deficit target.
31Because equation (68) is a stochastic differential equation, it is necessary that Ṙt also be continuous with respect to time.
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Long-term mean (β) Typically, we would expect this value to be zero. That is, in expectation, the

government targets a balanced budget. This can, however, be quite flexible. For example, we could

model the government’s financial position on an ex-interest charge basis. Thus, the long-term mean

would represent the expected source from government operations before debt servicing costs. The debt

servicing costs, therefore, could be computed endogenously in the debt strategy model as a function of

the existing portfolio and the financing strategy.

Deficit size (γ) We can think of this parameter as representing the expected impact of a recession on

the government’s financial position. As discussed earlier, this stems from the influence of increased

spending from automatic stabilizers and correspondingly reduced tax revenues.

Volatility (ξ) This final parameter represents the inherent volatility in the financial position process that

is independent from the business cycle. This is a reasonable thing to include in the model. A variety

of small random elements are involved in determining the government’s financial position. A relatively

small volatility permits us to incorporate those elements.

To simulate the financial position process, for a given parameter set, we need to discretize the stochastic

differential equation in equation (68). It does not seem obvious, if indeed it is possible, to solve this stochastic

differential equation explicitly. We assume, therefore, that its transition density is minimally unchanged from

the basic Ornstein-Uhlenbeck situation. That is,

Ft | Ft−1 ∼ N
(
β
(
1− e−α∆t

)
+ e−α∆tFt−1 + γRt,

β2

2α
(
1− e−α∆t

))
, (69)

where Rt is the discrete-time filtered probability of being in a recession at time t as defined in equation

(65). The derivation of the exact transition density for the Ornstein-Uhlenbeck process is outlined in Bolder

(2001, Appendix B). We expect that this will not be an unreasonable approximation to the true transition

density for this process.

Four alternative calibrations for the government financial position process, outlined in equation (68), are

illustrated in Table 3. The actual dynamics of these three potential financial position processes are described

in Figure 11. We have generated 50 separate sample paths using each parameter set described in Table 3.

The first two cases, outlined in the first two quadrants of Figure 11, have a moderate level of mean reversion

(α = 0.4), but differ in terms of jump size, volatility, and long-term mean. Observe how the larger jump

size leads to a small number of realizations with large negative shocks to the government’s financial position.

Also note that these large shocks do not persist. Cases 3 and 4 are identical to the first two cases, except

that the level of mean reversion has been increased (α = 0.7). Note the reduction in the dispersion around

the long-term mean value in these two cases compared with the first two cases.

We caution that the suggested modified Ornstein-Uhlenbeck process for the government’s financial posi-

tion is quite simplistic. There may be more sophisticated and realistic ways to capture the random evolution
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Table 3: Various Potential Parameter Calibrations: This table outlines calibrated parameters for the
simple model—based on the Ornstein-Uhlenbeck process—used to model the evolution of the government’s financial
position. All currency amounts are in billions of Canadian dollars.

Financial position parameters
Parameter Case 1 Case 2 Case 3 Case 4

F0 (initial financial position) $1 $1 $1 $1
β (long-term mean) $0 $3 $0 $3
α (mean reversion) 0.4 0.4 0.7 0.7
γ (jump size) -$1 -$3 -$1 -$3
ξ (volatility) $1 $3 $1 $3

of the government’s finances. Nevertheless, we felt that a straightforward first-order approximation was a

reasonable starting place for our modelling work. In particular, the mean-reverting nature of this model

avoids the rather serious problem of explosive government deficit and surplus positions. In addition to hav-

ing a well-controlled process, we also have an explicit dependence on the current state of the business cycle.

Finally, we have additional financial position uncertainty that is orthogonal to the underlying state of the

macroeconomy.

4.3 The unified simulation framework

In this final section dedicated to a discussion of the model, we will briefly review the entire algorithm

suggested for generating future joint sample paths of the business cycle, the government’s financial position,

and the term structure of interest rates. This essentially requires an amalgamation of the discussion in

the preceding sections. Before we get into the details, we introduce a final element of notation. Let the

superscript ∗ denote a simulated random variable. For example, if {Xt, t ∈ [0, s]} is a generic stochastic

process, then {X∗t , t ∈ [0, s]} represents a simulated sample path from this process. Our model algorithm

can be described in the following four steps. That is, the subsequent sequence of steps must be performed

to produce a single future realization of our joint processes for our stochastic simulation model.

Step 1: The State of the Economy We discretize our time dimension into T equal time steps, 1, ..., T .

We then use our transition matrix, P , to compute a sample path for the underlying state of the macro-

economy. This information is summarized in our state variable, {S∗t , t = 1, ..., T}. The actual approach

used to accomplish this is described in section 3.5. We may then use equation (16) to construct a set

of output growth realizations, {y∗t , t = 1, ..., T} that are consistent with the generated macroeconomic

observations. We have now computed the elements of the macroeconomy. It is important to note

that the impact of the macroeconomy in this setting is one-directional. That is, the macroeconomic

state influences the evolution of the term structure and the government’s financial position, but these
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Figure 11: Financial Position Sample Paths: This figure outlines 50 Government of Canada financial position

sample paths computed using the parameter set described in Table 3. In each case, the outcomes are generated over

a 10-year time interval.
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processes do not impact the macroeconomic state.

Step 2: Output Growth and Filtered Probabilities The next step is to use our output growth se-

quence, {y∗t , t = 1, ..., T}, to construct the filtered probabilities that are required to control the steepness

of the term structure of interest rates. Using equation (44) and the generated output growth, we may

compute {R∗t , t = 1, ..., T} ≡ {P[S∗t | F∗t ], t = 1, ..., T}, where F∗t
4
= σ{y∗t , t = 1, ..., T} is the σ-algebra

generated by our simulated output growth process. Adjusting Rt backwards by τ quarters—following

from equation (66)—provides us with the desired process, {Λ∗t , t = 1, ..., T}.

Step 3: The Term Structure In this step we make use of equation (67) and {Λ∗t , t = 1, ..., T}, which was

created in the previous step. These inputs are used to construct the market price of risk parameter,

λ̃∗1,t. With {λ̃∗1,t, t = 1, ..., T}, we can now construct the associated term structure of interest rates in a

manner that is consistent with the observed sequence of macroeconomic states.32 This completes the

construction of the term structure of interest rates.
32See Appendix B for a description of how to generate the non-central χ2-variates necessary for the construction of the

two-factor CIR model.
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Step 4: The Government’s Financial Position The final step involves using equation (68) to compute

a realization for the government’s financial position, {F ∗t , t = 1, ..., T}.

This algorithm is summarized in Figure 13, which essentially fills in the details around the general presen-

tation in Figure 2.

A single sample path stemming from the previously described four-step algorithm is summarized in

Figure 12. Observe, in the first quadrant of Figure 12, that this realization has two recessionary periods:

one lasting for a single quarter and another persisting for three quarters. We can see, in the case of the

prolonged three-quarter recession, that Λt provided τ = 4 quarters of warning of the impending economic

slowdown. This contributes to the relative flat set of term-structure outcomes for this period as described

in the fourth quadrant of Figure 12. Finally, note that the recessionary periods are associated with weak

output growth and troughs in the government financial position realizations.

Figure 12: Simulation Results: This graph illustrates the various outputs for the construction of a sample path

for output, expenditure, and revenue growth as well as the corresponding term structure of interest rates.
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Figure 13: The Simulation Framework: This figure summarizes the basic algorithm suggested for the genera-

tion of a realization for our joint model of the business cycle, the term structure of interest rates, and the government’s

financial position. Figure 12 described a single realization in a graphical manner.
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5 Conclusion

The objective of this paper was to construct a parsimonious reduced-form model describing the joint evolution

of the economic business cycle, the government’s financial position, and the term structure of interest rates.

To accomplish this goal, we modelled the dynamics of the business cycle with the hidden-Markov model

suggested by Hamilton (1989). This allowed us to build our entire stochastic framework on a conceptually

straightforward and flexible foundation. We then employed a transformation of the filtered probability of

recession to capture the flat or inverted term-structure outcomes observed to occur prior to business cycle

downturns. We are able to capture these dynamics—in an admittedly simplistic manner—by constructing a

time-varying market price of risk parameter through a convex combination involving the filtered probabilities.

Finally, we specify the government’s financial position as a modified Ornstein-Uhlenbeck process. The process

is modified in the sense that the dynamics of the government’s financial position depend importantly on the

40



Towards a More Complete Debt Strategy Simulation Framework

current state of the business cycle.

How helpful is this model to our debt strategy analysis? To answer this question, we revisit the guidelines

established in the first section of this paper. We indicated that our model should permit us to perform stress

analysis. One of the advantages of the hidden-Markov framework is its potential application to this area. In

particular, we could easily add a third state that leads to the occurrence of extreme outcomes with small,

but positive, probability. As stated earlier, this is conceptually similar to the peso problem in economics.

These negative realizations could involve both the term structure of interest rates and the government’s

financial position. The specification of the transition probabilities of this additional state would permit

us to incorporate some element of the probability of occurrence into our stress-testing framework. This is

interesting because standard stress-testing methodologies do not make any statement about the probability of

their occurrence. This methodology, therefore, represents a welcome addition to this important but difficult

area of debt strategy analysis.

Another important guideline is sufficient model flexibility to allow sensitivity analysis. The simplicity

of the financial position model and the calibration approach permits examination of the sensitivity of the

results to any assumption about the future dynamics of the government’s financial position. We could, for

example, consider the impact on the debt charge distribution of an increase in the impact of a recession on

the government’s financial position. Conversely, we might want to increase the mean-reversion properties of

the financial position process. This is equivalent to saying that the government is quicker to take steps in

altering discretionary spending in the face of budget deficits. In general, this model specification is extremely

useful in helping us to understand how different financing strategies react to changes in model assumptions.

In our initial guidelines, we asked that the stochastic processes employed capture the general empirical

properties of the individual random macroeconomic variables. There are at least two weaknesses in this

area. First, the proposed methodology does a reasonable job of creating flat or inverted term structures

prior to recession, but it does not perform as well at generating steep term-structure outcomes at the end of

a recession. The reasons for this are primarily structural. The proposed technique is not sufficiently flexible

to capture the term-structure dynamics in a symmetric fashion. That is, it generates the requisite flatness

τ periods prior to recession, but it does not allow for greater-than-average steepness τ periods prior to a

recovery. This is a weakness in our approach. The methodology does allow for the term structure to be

relatively steep τ periods prior to a recovery, compared with τ periods prior to a recession. Despite the

weakness in our technique, we felt that capturing the leading indicator nature of term-structure steepness

prior to recession was most important. Moreover, the modifications we considered to rectify this drawback

were ultimately rejected owing to their increased complexity.

Second, the suggested modified Ornstein-Uhlenbeck process for the government’s financial position is

quite simplistic. There may be more sophisticated and realistic ways to capture the random evolution of the

government’s finances. In addition, our inability to estimate model parameters is a concern. Nevertheless, a
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number of alternative specifications we examined for this purpose exhibited rather poor behaviour. In par-

ticular, every specification without mean-reversion that we considered displayed the rather serious problem

of explosive government deficit and surplus positions. Ultimately, we opted for a simple calibrated process

for the government’s financial position, because it is well-behaved, easy to interpret, and has an explicit

dependence on the current state of the business cycle.

This paper, in conjunction with Bolder (2001), has taken a first step towards broadening the stochastic

framework used in the analysis of the Government of Canada’s debt strategy problem. In the introduction, we

outlined a number of guidelines to focus our analysis. Among them, defensibility, parsimony, and flexibility

were paramount. The resulting approach, therefore, involves simple models that capture first-order effects

often at the expense of statistical and theoretical sophistication. Clearly, more work needs to be done in this

area. Nevertheless, we feel that the suggested model serves as a reasonable foundation for our stochastic

simulation framework. Moreover, because it represents an improvement upon our current approach, it should

help to increase our confidence in the risk and cost measures generated in the course of our debt strategy

analysis.
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Appendix A: Some Markov Chain Results

In section 3.1, it was claimed that the transition probabilities for a Markov chain m periods in the future

are described by the matrix, Pm. To demonstrate this concept, we introduce an N × 1 random vector, ξt,

which has the following form

ξt =



[
1 0 · · · 0

]T
, if St = 1[

0 1 · · · 0
]T
, if St = 2

...
...[

0 0 · · · 1
]T
, if St = N

. (70)

This is a useful abstraction. It introduces the convenience of the indicator function into our analysis. More

specifically, if St = i, then the jth element of ξt is equal to one with probability, pij , and zero otherwise.

Moreover, if we write out the conditional expectation of ξt+1 given that St = i, we have

E[ξt+1 | St = i] =


pi1

pi2
...

piN

 . (71)

This is merely the ith column of the transition matrix. Moreover, the actual realization of ξt is merely the

ith column of an N ×N identity matrix. To see this more clearly, consider a three-state example where

E[ξt+1 | St = 1] =


p11

p12

p13

 , (72)

where,

ξt =


1

0

0

 .
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Combining the two expressions from equation (72), and using the fact that conditioning on St = 1 or ξt is

equivalent, we may conclude with a bit of simple matrix algebra that,

E[ξt+1 | St = 1] =


p11

p12

p13

 , (73)

E[ξt+1 | ξt] =


p11 p21 p31

p12 p22 p32

p13 p23 p33




1

0

0

 ,
= Pξt.

Now we use the result in equation (73), the Markov property, and a bit of manipulation, to obtain the

following useful identity,

E[ξt+1 | ξt] = Pξt, (74)

E[ξt+1 | ξt, ξt−1, ...] = Pξt,

ξt+1 − E[ξt+1 | ξt, ξt−1, ...]︸ ︷︷ ︸
Call this νt+1

= ξt+1 − Pξt,

ξt+1 = Pξt − νt+1.

Thus, we have that ξt is an AR(1) process and, given that νt is a sequence of martingale differences, it has

zero expectation (i.e., E[νt] = 0). Our original goal, however, was to see what happens m periods into the

future. Consider, therefore, the simple case for t+ 2,

ξt+2 = P ξt+1︸︷︷︸
equation

(74)

−νt+2, (75)

ξt+2 = P (Pξt − νt+1)− νt+2,

ξt+2 = P 2ξt − Pνt+1 − νt+2.

If we generalize equation (75) for an m period forecast, we have

ξt+m = P 0νt+m−0 + P 1νt+m−1 + · · ·+ Pm−1νt+m−(m−1) + Pmξt, (76)

= Pmξt +
m−1∑
i=0

P iνt+m−i.

This is a useful recursion relation, but it becomes even more handy when we add the expectation operator.
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Recall that the νt terms have zero expectation. Therefore,

E[ξt+m | ξt, ξt−1, ...] = E[Pmξt +
m−1∑
i=0

P iνt+m−i | ξt, ξt−1, ...], (77)

= E[Pmξt | ξt, ξt−1, ...] + E

[
m−1∑
i=0

P iνt+m−i | ξt, ξt−1, ...

]
,

= Pm E[ξt | ξt, ξt−1, ...]︸ ︷︷ ︸
=ξt

+
m−1∑
i=0

P i E [νt+m−i | ξt, ξt−1, ...]︸ ︷︷ ︸
=0

,

E[ξt+m | ξt] = Pmξt.

This is a useful result. It holds that the transition probabilities for m periods in the future are provided

by raising the one-period transition matrix to the mth power.

In section 3.1, we also briefly addressed what happens to the transition probabilities of our Markov chain

as m gets very large. Loosely speaking, as we consider the limit of m tending to infinity in equation (15),

the importance of the initial value decreases until we essentially lack any conditioning information. Thus,

we can interpret these limiting values as the ergodic, or unconditional, probabilities of our Markov chain.

Another way of thinking about these probabilities is to imagine a Markov chain achieving a steady set of

transition probabilities after a large number of periods. To the extent that these values serve as the starting

point for the non-linear filter we use to estimate the parameter values in section 3.2, we will need some

method for computing these probabilities. To see how this is done, let us consider a two-state example with

the following transition matrix,

P =

 q 1− p
1− q p

 . (78)

The first step is to find the eigenvalues of this matrix. To do that, we need to find the roots of the

characteristic polynomial,

det(P − λI) = det

q − λ 1− p
1− q p− λ

 , (79)

= (q − λ)(p− λ)− (1− p)(1− q),

= λ2 − λ(q + p) + (q + p− 1),

= (λ− 1)(λ+ 1− q − p).

This implies that the eigenvalues are,

λ1 = 1, (80)

λ2 = q + p− 1, (81)
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where I denotes the identity matrix. Using the definition of ergodicity, introduced in section 3.1, we can

place conditions on q and p. In particular, we have one eigenvalue, λ1, that is unity and thus the second

eigenvalue must satisfy

| λ2 |< 1, (82)

| q + p− 1 |< 1,

−1 < q + p− 1 < 1,

0 < q + p < 2.

The next step is to compute the eigenvectors associated with our two eigenvectors. This is done in the

usual way.33 The results are,

xλ1 =
[

1−p
2−q−p

1−q
2−q−p

]T
, (85)

xλ2 =
[
−1 1

]T
. (86)

It is worth noting that the second eigenvector was normalized such that the following is true,

~1xλ2 =
[
1 1

] 1−p
2−q−p

1−q
2−q−p

 = 1. (87)

At this point, we make the claim that xλ2 is, in fact, the vector of ergodic probabilities. That is, the

unconditional probabilities are,

P[St = 0] =
1− p

2− q − p
, (88)

P[St = 1] =
1− q

2− q − p
. (89)

While we will not prove this result, we will work through a simple exercise to provide some intuition.34 First,

we have shown that our matrix of transition probabilities, P , has two real-valued, distinct eigenvalues and
33That is, we must find a basis for the parameterized solution of the following two equations,

(P − λ1I)xλ1 = 0, (83)

(P − λ2I)xλ2 = 0. (84)

34This discussion is not a proof because we consider only the case where the eigenvalues in our spectral decomposition are

real-valued and distinct. While it is possible to generalize the following discussion to these cases, it is a level of generality that

is not required in our analysis.
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thus we can safely perform the following spectral decomposition,

P = AΛA−1, (90)

=

 1−p
2−q−p −1

1−q
2−q−p 1

1 0

0 q + p− 1

 1 1
−(1−q)
2−q−p

1−p
2−q−p

 .
We have seen that if we want the m-period-ahead transition probabilities for an ergodic Markov chain, we

need only to compute Pm. Clearly, the ergodic probabilities would be the limit of this quantity as m tends

to infinity. Consider, therefore, the following,

lim
m→∞

Pm = lim
m→∞

(
AΛmA−1

)
, (91)

= A lim
m→∞

(Λm)A−1,

= A lim
m→∞


1 0

0 q + p− 1


︸ ︷︷ ︸

Recall (q + p− 1) < 1

by definition.



m

A−1,

= A

1 0

0 0

A−1,

=

 1−p
2−q−p

1−p
2−q−p

1−q
2−q−p

1−q
2−q−p

 ,
=

 1−p
2−q−p

1−q
2−q−p

[1 1
]
,

= π~1,

where π = xλ2 , as in equation (15). Thus, we can see that, in a loose sense, the limiting probabilities are

given by the second eigenvector.35

35Furthermore, this gives some intuition as to why, to have an ergodic Markov chain, only one eigenvalue can be unity and

the rest must lie inside the unit circle.
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Appendix B: The Non-Central χ2 Distribution

This appendix briefly discusses how one can make random draws from a non-central χ2 distribution. The

appropriate place to start in this discussion is with the χ2 distribution. The χ2 distribution is a special case

of the gamma distribution. There are, however, two additional facts about the χ2 distribution that are both

interesting and useful in its simulation:

• If X ∼ N (0, 1), then X2 ∼ χ2(1). That is, the square of a standard normal variate is a χ2 random

variate with one degree of freedom.

• If X1, ...,Xn are independent random variates and Xi ∼ χ2(1), then
∑n
i=1Xi ∼ χ2(n). Or, rather,

independent χ2 normal variates sum (as do their degrees of freedom) to a χ2 random variate.36

How, therefore, does a non-central χ2 distribution arise? If X1,X2, ...,Xn are standard normal variates and

a1, ..., an ∈ R, then,

n∑
i=1

(Xi + ai)2 ∼ χ2(n,m), (92)

where,

m =
n∑
i=1

a2
i , (93)

and χ2(n,m) denotes a non-central χ2 distribution with n degrees of freedom and a non-centrality parameter,

m.37 Two interesting facts about the non-central χ2 distribution—related closely to the two previously

mentioned facts about the χ2 distribution—will assist us in our task:

• If X ∼ N (
√
m, 1), then X2 ∼ χ2(1,m). Therefore, a squared standard normal random variate gives rise

to a χ2 random variate, while a squared normal random variate with mean,
√
m, leads to a non-central

χ2 random variate with a non-centrality parameter, m.

• If X ∼ χ2(1) and Y ∼ χ2(1,m) are independent random variables, then X + Y ∼ χ2(2,m).

These two features of the non-central χ2 provide us with the actual simulation algorithm. In particular,

one may simulate a random variate from a χ2(a, b) distribution in two steps. First, generate X such that

X ∼ N (
√
b, 1). Then, merely generate an independent Y such that Y ∼ χ2(a− 1). X2 + Y is, therefore, a

draw from a χ2(a, b) distribution.
36These facts come almost directly from Casella and Berger (1990, page 222).
37This definition follows from Johnson, Kotz, and Balakrishnan (1997, page 433).
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Armed with this information, we can generate the state variables in equations (59) and (60) from the

two-factor CIR term-structure model. The transition density of each state variable, yi, is as follows,

yi(t) | yi(s) ∼ γχ2(α, β), (94)

where,

α =
4κi
σ2
i

, (95)

β =
4κie−κi(t−s)

σ2
i

(
1− e−κi(t−s)

)yi(s), (96)

γ =
σ2
i

(
1− e−κi(t−s)

)
4κi

, (97)

for t ≥ s and i = 1, 2.38 To reiterate, therefore, we generate X such that X ∼ N (
√
β, 1). Then, we

draw independent Y such that Y ∼ χ2(α − 1). The simulated value of yi(t), conditioning on yi(s), is thus

γ(X2 + Y ).39

38For more details on the exact nature of this transition density, see Cox, Ingersoll, and Ross (1985b, pp. 391-92).
39I am thankful to Mark Reesor of the University of Western Ontario and Antje Berndt of Stanford University for bringing

this straightforward algorithm to my attention.
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Appendix C: The Term Premium

This appendix relates to a question in Appendix C of de Jong (2000). I have specialized the analysis of the

question to the single-factor CIR model because this eases the analysis somewhat.40 We are given the Itô

dynamics of the affine bond price function,

dP (τ)
P (τ)

= µP (τ)dt+ σP (τ)dW (t), (98)

where {W (t), t ∈ [0,∞)} is a standard, scalar Wiener process defined on the filtered probability space,

(Ω,F ,P). The claim is that the coefficients have the following form,

µP (τ) = r(t) + λσP (τ), (99)

σP (τ) = −σ2r(t)B(τ). (100)

Moreover, one may conclude that the term premium for a longer-term bond is equal to −λσ2r(t)B(τ). I

have tried to establish this claim directly using Itô’s theorem and the actual CIR bond price function, and

have not been successful. It is, of course, possible that I have

• formulated the problem incorrectly or have made a serious logical error in the way I have approached

the establishment of this claim,

• or, if this is not the case, I have made some fundamental error in my calculations.

Here is my approach. By assumption, we have that,

P (τ) = eA(τ)−B(τ)r(t), (101)

where,

A(τ) = ln

[(
2γe

aτ
2

a(eγτ − 1) + 2γ

) 2κθ
σ2
]
, (102)

B(τ) =
2(eγτ − 1)

a(eγτ − 1) + 2γ
(103)

and,

a = κ+ λ+ γ, (104)

γ =
√

(κ+ λ)2 + 2σ2. (105)

40It is also a member of the affine class and thus this analysis should hold in a two-factor setting.
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By Itô’s theorem, we have that

dP (τ) = Ptdt+ Prdr(t) +
1
2
Prrd〈r〉(t), (106)

= Ptdt+ Pr

(κθ − (κ+ λ)r(t))dt+ σ
√
r(t)dW (t)︸ ︷︷ ︸

dynamics of r(t) under P

+
1
2
Prrσ

2r(t)dt, (107)

=
(
Pt + (κθ − (κ+ λ)r(t))Pr +

σ2

2
Prrr(t)

)
dt+ σ

√
r(t)PrdW (t). (108)

By equation (101), we have the required partial derivatives,

Pt = (−A′(τ) +B′(τ)r)P (τ), (109)

Pr = −B(τ)P (τ), (110)

Prr = B2(τ)P (τ), (111)

where A′(τ) and B′(τ) represent the partial derivatives of the functions A(τ) and B(τ) with respect to t. If

we substitute equations (109) to (111) into equation (108) and simplify, we have

dP (τ)
P (τ)

=
(
−(A′(τ) + κθB(τ)) + (B′(τ) + (κ+ λ)B(τ) +

σ2

2
B2(τ))r(t)

)
dt− σ

√
r(t)B(τ)dW (t). (112)

Thus, we have,

µP (τ) = −(A′(τ) + κθB(τ)) + (B′(τ) + (κ+ λ)B(τ) +
σ2

2
B2(τ))r(t), (113)

σP (τ) = −σ
√
r(t)B(τ). (114)

To establish the claim, we require that equation (113) be of the same form as equation (99) and also that

equation (114) be equivalent to equation (100). The second set of equations are equivalent almost directly.

I suspect that equation (C.4) in de Jong (2000) either has a typographical error or I have made a mistake in

my algebra. To show the equivalence of the first two equations, we require that the following two expressions

hold,

B′(τ) + κB(τ) +
σ2

2
B2(τ) = 1, (115)

A′(τ) + κθB(τ) = −λσ
√
r(t)B(τ). (116)
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Let us see whether we can establish these two equalities. We will start with the partial derivatives of

A(τ) and B(τ) with respect to t. We have,

A′(τ) =
A(τ)
∂t

=
∂

∂t

ln

[(
2γe

aτ
2

a(eγτ − 1) + 2γ

) 2κθ
σ2
]

︸ ︷︷ ︸
equation (102)

 =
κθa

σ2

[
(eγτ − 1)(2γ − a)
a(eγτ − 1) + 2γ

]
, (117)

B′(τ) =
B(τ)
∂t

=
∂

∂t

 2(eγτ − 1)
a(eγτ − 1) + 2γ︸ ︷︷ ︸

equation (103)

 =
−4γ2eγτ

(a(eγτ − 1) + 2γ)2
. (118)

To rearrange equation (115), we also require the following,

(κ+ λ)B(τ) =
2(κ+ λ)(eγτ − 1)
a(eγτ − 1) + 2γ

· a(eγτ − 1) + 2γ
a(eγτ − 1) + 2γ

, (119)

=
2(κ+ λ)a(eγτ − 1)2 + 4(κ+ λ)γ(eγτ − 1)

(a(eγτ − 1) + 2γ)2
, (120)

and,

σ2

2
B2(τ) =

2σ2(eγτ − 1)2

(a(eγτ − 1) + 2γ)2
. (121)

We can now represent the left-hand side of equation (115) using equations (118) to (121) as follows,

1 = B′(τ) + κB(τ) +
σ2

2
B2(τ) (122)

1 =
−4γ2eγτ + 2(κ+ λ)a(eγτ − 1)2 + 4(κ+ λ)γ(eγτ − 1) + 2σ2(eγτ − 1)2

(a(eγτ − 1) + 2γ)2
, (123)

1 =
2((κ+ λ)a+ σ2)(eγτ − 1)2 + 4(κ+ λ)γ(eγτ − 1)− 4γ2eγτ

a2(eγτ − 1)2 − 4γa(eγτ − 1) + 4γ2
, (124)

0 = 2((κ+ λ)a+ σ2)(eγτ − 1)2 + 4(κ+ λ)γ(eγτ − 1)− 4γ2eγτ −(
a2(eγτ − 1)2 − 4γa(eγτ − 1) + 4γ2

)
, (125)

0 = 4(κ+ λ)γ(eγτ − 1)− 4γ2eγτ + 4γa(eγτ − 1)− 4γ2, (126)

0 = −4γ2eγτ , (127)

which is clearly untrue. Nevertheless, it is all tantalizingly close and I wonder whether I am missing a trick

or a manipulation somewhere (or, what is more likely, an error). In particular, the difference relates to the

numerator of B′(τ), which seems suspiciously coincidental (although I cannot locate an error). Finally, we
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can examine the LHS of equation (116) using equations (117) and equation (103) as follows,

LHS of equation (116) =
κθa

σ2

[
(eγτ − 1)(2γ − a)
a(eγτ − 1) + 2γ

]
+

2κθ(γeγτ − 1)
a(eγτ − 1) + 2γ

, (128)

=
κθ(eγτ−1)(a(2γ − a) + 2σ2)

σ2(a(eγτ − 1) + 2γ)
. (129)

A bit of manipulation reveals that,

a(2γ − a) + 2σ2 = ((κ+ λ) + γ)(−(κ+ λ) + γ)) + 2σ2, (130)

= (γ2 − (κ+ λ)2) + 2σ2, (131)

= (κ+ λ)2 + 2σ2 − (κ+ λ)2 + 2σ2, (132)

= 4σ2. (133)

Substitution of this result into equation (129) yields,

κθ(eγτ−1)4σ2

σ2(a(eγτ − 1) + 2γ)
=

2κθ
(
2(eγτ−1)

)
(a(eγτ − 1) + 2γ)

= 2κθB(τ). (134)

Again, this is not equal to the RHS of equation (116). Matching coefficients, it is clear that,

2κθ 6= −λσ
√
r(t). (135)

As before, it is unclear where the error in this approach lies.
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Appendix D: The Extended Filter

Hamilton’s (1989) filter is a very useful way to introduce non-linearity into the study of economic regimes.

Indeed, it permits us to simultaneously estimate the AR dynamics of the growth in output and the two

distinct regimes for that growth. A drawback of these models, however, is that conditional on being in

a given state, the probability of either remaining in that state or transitioning to another state is fixed.

It depends, in fact, only on the previous state. This is a simple feature of Markov chains. There are,

nevertheless, times when it would be useful to make these probabilities a function of some set of leading

economic indicators. In this way, the elements of our transition matrix would vary over time. An additional

consequence of a time-varying transition matrix is that the expected duration of a given business cycle is

not—as in the simple hidden-Markov model—a constant value.

How, therefore, do we implement this type of approach? The basic model is the same as in equation

(16), but we must define the transition probabilities in a more complicated manner than the representation

in equations (20) to (23).41 In particular, we give the transition probabilities the following logistic form,

P[St = 1 | St−1 = 1, zt−1] = p(zt) =
eα1+zTt−1β1

1 + eα1+zTt−1β1
, (136)

P[St = 1 | St−1 = 0, zt−1] = 1− p(zt) =
1

1 + eα1+zTt−1β1
, (137)

P[St = 0 | St−1 = 0, zt−1] = q(zt) =
eα0+zTt−1β0

1 + eα0+zTt−1β0
, (138)

P[St = 0 | St−1 = 1, zt−1] = 1− q(zt) =
1

1 + eα0+zTt−1β0
, (139)

where zt is a vector of leading economic indicators at time t.42 As we will see, this has some slight, but

important, implications for the form of our non-linear filtering algorithm. First, it implies that our parameter

vector is larger. That is,

θ =
[
µ0 µ1 σ2 φ1 α0 α1 β0 β1

]T
. (141)

The approach used to determine this parameter vector is—as is the case with Hamilton’s (1989) filter—

the maximization of the conditional log-likelihood function. Specifically, we numerically solve the following
41This approach was introduced in Filardo (1993, 1998), and Filardo and Gordon (1993, 1994). This appendix draws heavily

on their works.
42This implies that our transition matrix is,

P =

[
q(zt) 1− p(zt)

1− q(zt) p(zt)

]
. (140)

In a two-state example, such as this, it is possible to give the transition probabilities an inverse standard normal distribution

function (i.e., probit) specification.
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non-linear maximization problem,

max
θ

T∑
t=1

ln (f∗(yt | yt−1, zt−1; θ)) . (142)

The trick, introduced in Filardo (1993), is to decompose f∗ in a manner that allows us to apply the non-

linear filtering algorithm proposed by Hamilton (1989). How does it work? As usual, we begin with the

initialization of the log-likelihood function at zero, `(θ). We then compute the steady-state probabilities

introduced in Appendix A using,

P[S0 = 1 | y0, z0] =
1− q(z0)

2− p(z0)− q(z0)
=

1 + eα1+zT0 β1

2 + eα0+zT0 β0 + eα1+zT0 β1
, (143)

P[S0 = 0 | y0, z0] =
1− q(z0)

2− p(z0)− q(z0)
=

1 + eα0+zT0 β0

2 + eα0+zT0 β0 + eα1+zT0 β1
. (144)

Once again, the next step is the computation of the joint probabilities. Consider the following:

P[S1 = i, S0 = j | y0, z0] = P[S1 = i | S0 = j, y0, z0]︸ ︷︷ ︸
Independent of y0

by Markov property

·P[S0 = j | y0, z0], (145)

= P[S1 = i | S0 = j, z0]︸ ︷︷ ︸
equations (136) to (139)

· P[S0 = j | y0, z0],︸ ︷︷ ︸
equation (143) or (144)

where i, j = 0, 1. Observe that, as in Hamilton’s (1989) filter, we will have to update the second expression

(P[St = j | yt, zt]) at each iteration of the filter. We now have sufficient ammunition to actually expand f∗

into something reasonable. This is accomplished through the following expansion,

f∗(y1 | y0, z0) (146)

=
1∑
i=1

1∑
j=1

f(y1, S1 = i, S0 = j | y0, z0),

=
1∑
i=1

1∑
j=1

f(y1 | S1 = i, S0 = j, y0, z0)︸ ︷︷ ︸
Independent of z0
by equation (16)

·P[S1 = i, S0 = j | y0, z0],

=
1∑
i=1

1∑
j=1

f(y1 | S1 = i, S0 = j, y0, z0) · P[S1 = i | S0 = j, z0] · P[S0 = j | y0, z0].︸ ︷︷ ︸
equation (145)
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In gory detail, we have that,

f∗(y1 | y0, z0) =
1√

2πσ2
e−(

y1−µ1−φ1(y0−µ1))2

2σ2 p(z0)

(
1 + eα1+zT0 β1

2 + eα0+zT0 β0 + eα1+zT0 β1

)
+ (147)

1√
2πσ2

e−(
y1−µ1−φ1(y0−µ0))2

2σ2 (1− p(z0)) ·
(

1 + eα0+zT0 β0

2 + eα0+zT0 β0 + eα1+zT0 β1

)
+

1√
2πσ2

e−(
y1−µ0−φ1(y0−µ0))2

2σ2 (1− q(z0))

(
1 + eα1+zT0 β1

2 + eα0+zT0 β0 + eα1+zT0 β1

)
+

1√
2πσ2

e−(
y1−µ0−φ1(y0−µ1))2

2σ2 q(z0)

(
1 + eα1+zT0 β1

2 + eα1+zT0 β1 + eα1+zT0 β1

)
.

This previous expression holds only for the first iteration of the filter, because we were able to use the steady-

state probabilities (as summarized in equations (143) and (144)) in our computations of P[S0 = i | y0, z0] for

i = 0, 1. For subsequent iterations, we need to update this to determine P[S1 = i | y1, z1] for i = 0, 1.43 In

particular, we require an updating step similar to that performed in equation (44). This has the following

general form,

P[S1 = i | y1, z1] =
1∑
j=0

P[S1 = i, S0 = j | y1, z1], (148)

=
1∑
j=0

f(y1, S1 = i, S0 = j | y0, z0)
f∗(y1 | y0, z0)

,

=
1∑
j=0

Easily computed from equations (145) to (147)︷ ︸︸ ︷
f(y1 | S1 = i, S0 = j, y0)P[S1 = i, S0 = j | y0, z0]

f∗(y1 | y0, z0)︸ ︷︷ ︸
equation (147)

.

Finally, let us demonstrate how we compute the smoothed probabilities in the context of the time-varying
43Of course, in general we compute P[St = i | yt, zt].
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parameter model. The underlying analysis follows from equation (46),

P[St = j | yT , zT ] =
1∑
k=0

P[St = j, St+1 = k | yT , zT ], (149)

=
1∑
k=0

P[St+1 = k | yT , zT ]P[St = j | St+1 = k, yT , zT ],

=
1∑
k=0

P[St+1 = k | yT , zT ]P[St = j | St+1 = k, yt, zt]︸ ︷︷ ︸
This holds approximately.

See pseudo-proof

in section 3.3.

,

=
1∑
k=0

P[St+1 = k | yT , zT ]
(
P[St = j, St+1 = k | yt, zt]

P[St+1 = k | yt, zt]

)
,

=
1∑
k=0

P[St+1 = k | yT , zT ]P[St = j | yt, zt]

Independent of yt
by Markov property︷ ︸︸ ︷

P[St+1 = k | St = j, yt, zt]
P[St+1 = k | yt, zt]

,

=
1∑
k=0

From previous iteration︷ ︸︸ ︷
P[St+1 = k | yT , zT ]

equation (148)︷ ︸︸ ︷
P[St = j | yt, zt]

equations (136) to (139)︷ ︸︸ ︷
P[St+1 = k | St = j, zt]∑1

j=0 P[St = j | yt, zt]︸ ︷︷ ︸
equation (148)

P[St+1 = k | St = j, zt]︸ ︷︷ ︸
equations (136) to (139)

.

Again, as in section 3.3, the movement from the second to the third line of the previous manipulation is only

an approximation.
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