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Abstract 

This paper proposes a Markov-switching framework to endogenously identify the 
following: (1) regimes where economies synchronously enter recessionary and 
expansionary phases; and (2) regimes where economies are unsynchronized, essentially 
following independent business cycles. The reliability of the framework to track changes 
in synchronization is corroborated with Monte Carlo experiments. An application to the 
case of U.S. states reports substantial changes over time in the cyclical affiliation patterns 
of states. Moreover, a network analysis discloses a change in the propagation pattern of 
aggregate contractionary shocks across states, suggesting that regional economies in the 
United States have become more interdependent since the early 1990s. 

JEL classification: E32, C32, C45 
Bank classification: Business fluctuations and cycles; Econometric and statistical 
methods; Regional economic developments 

Résumé 

Dans cette étude, l’auteur propose un modèle markovien à changement de régime pour 
repérer de façon endogène : 1) les régimes dont les économies entrent simultanément en 
récession ou dans une phase d’expansion et 2) les régimes dont les économies ne sont pas 
synchronisées et suivent pour l’essentiel des cycles indépendants. Les simulations de 
Monte-Carlo viennent confirmer la fiabilité de ce modèle lorsqu’il s’agit de suivre les 
changements touchant la synchronisation des cycles. Son application au cas des États 
américains met en évidence des changements importants qui s’opèrent à la longue dans 
les profils de synchronisation cyclique des États. Par ailleurs, une analyse des réseaux 
révèle une évolution du profil de propagation de l’ensemble des chocs restrictifs au sein 
des États, ce qui semble indiquer une interdépendance croissante des économies 
régionales aux États-Unis depuis le début des années 1990. 

Classification JEL : E32, C32, C45 
Classification de la Banque : Cycles et fluctuations économiques; Méthodes 
économétriques et statistiques; Évolution économique régionale 

 

 



1 Introduction

The analysis of business cycle synchronization provides crucial information for policy-

makers in determining the economic regions most sensitive to policy changes or shocks.

Most of the related studies have mainly focused on describing the cyclical patterns of

economies during a given time span. However, little has been done in terms of assessing

potential changes in those patterns, which can be caused by a variety of factors, such as

policy modifications, trade agreements, economic unions, aggregate recessionary shocks,

etc.

Because of the asymmetric nature of business cycles, multivariate Markov-switching

(MS) models (Hamilton (1989)) have become useful tools for analyzing the synchroniza-

tion of national economies (Smith and Summers (2005) and Camacho and Perez-Quiros

(2006)), or regional economies (Owyang et al. (2005) and Hamilton and Owyang (2012)).

In these studies, real economic activity is modelled as a function of a latent variable that

indicates, at each time period, if the economy is in a recessionary or an expansionary

phase. These studies provide an overall picture of the synchronization between the busi-

ness cycles of different economies, although they are not able to endogenously identify

potential synchronization changes. This paper specifically examines how the dependency

relationship between the latent variables governing a multivariate MS model changes over

time.

The approaches used in the literature to deal with multivariate MS frameworks tradi-

tionally assume constant dependency relationships between the latent variables. These can

be sorted into two categories. The first category includes studies where the relation is a

priori based on the researcher’s judgment. Multivariate MS models are usually analyzed

under three different settings (Hamilton and Lin (1996) and Anas et al. (2007)). The

first refers to the case where all series follow common regime dynamics (Krolzig (1997)

and Sims and Zha (2006)). The second, which is the most followed approach, uses to-

tally independent Markov chains (Smith and Summers (2005) and Chauvet and Senyuz

(2008)). In the third, the dynamics of one latent variable precedes those of other latent

variables (Hamilton and Perez-Quiros (1996) and Cakmakli et al. (2011)), allowing for a

possibly different number of lags.1 Accordingly, the obtained regime inferences and final

interpretations of the model’s output may vary substantially depending on the approach

chosen.2

1Another type of relationship, under a univariate framework, is presented in Bai and Wang (2011),
where the state variable governing the mean of the process is conditional to the one governing the variance
of that process.

2There is also the case of a general Markovian specification that involves the full transition probability
matrix; however, it raises computational diffi culties with a large number of series, states or lags. It is
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The second category focuses on making a posteriori assessments of the synchronization

between MS processes, providing "average" dependency relationship estimates. Work in

this line are Guha and Banerji (1998) and Artis et al. (2004), which after estimating

different univariate models, compute cross-correlations between the probabilities of being

in recession as measures of synchronization. However, as shown in Camacho and Perez-

Quiros (2006), these approaches may lead to misleading results, since they are biased

toward showing relatively low values of synchronization precisely for countries that exhibit

synchronized cycles. This suggests that a bivariate framework would provide a better

characterization of pairwise synchronization than two univariate models.

Regarding the analysis of pairwise business cycle contemporaneous synchronization,

Phillips (1991) points out the two extreme cases presented in the literature: the case of

complete independence (two independent Markov processes are hidden in the bivariate

specification) and the case of perfect synchronization (only one Markov process for both

variables). Similarly, Harding and Pagan (2006) propose a test for the hypothesis that

cycles are either unsynchronized or perfectly synchronized. Pesaran and Timmermann

(2009) also focus on testing independence between discrete multi-category variables based

on canonical correlations. Another similar approach, followed by Camacho and Perez-

Quiros (2006), Bengoechea et al. (2006), and Leiva-Leon (2014), consists of modelling the

data-generating process as a linear combination between the unsynchronized and perfectly

synchronized cases. Although these approaches provide inferences on the dependency

relationship among the latent variables, they are not able to analyze it in a time-varying

fashion.

This paper provides a new approach to infer the time-varying relationship between

the latent variables governing multivariate MS models. This information allows us to en-

dogenously identify regimes where two economies enter recessions and expansions synchro-

nously, from regimes where the economies are unsynchronized and experience independent

business cycle phases. In contrast to the previous related literature, the proposed filter not

only provides a full characterization of the regime inferences, but it also simultaneously

provides inferences on the type of synchronicity that both economies experience at each

period of time.

The model is estimated by Gibbs sampling and its reliability is assessed with Monte

Carlo experiments, which identify it as a suitable approach to track changes in the syn-

chronization of cycles. Moreover, the obtained pairwise synchronizations can be easily

converted into measures of dissimilarity, which can be interpreted as cyclical distances

and used in assessing changes in the clustering and interdependence patterns that could

be experienced by not only two, but many, economies. This is done by relying on network

also less straightforward to interpret, and does not allow us to endogenously infer the type of relationship
between the latent variables.
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analysis, where economies take the interpretation of nodes, with links between pairs of

nodes given by the estimated synchronicity, fully characterizing a business cycle network

governed by Markovian dynamics.

The proposed framework is applied to investigate potential variations in the cyclical

interdependence between U.S. states, obtaining three main findings. First, the results

report the existence of interdependence cycles, which are associated with recessions as

identified by the National Bureau of Economic Research (NBER). Such cycles are defined

as periods characterized by low cyclical heterogeneity across states, experienced during

the recessionary and recovery phases, followed by longer periods of high cyclical hetero-

geneity, which occurs during the phases of stable growth. Second, there are substantial

variations in the grouping pattern of states over time, going from a scheme characterized

by several clusters of states to a core and periphery structure, composed of highly and

lowly synchronized states, respectively. Third, the network analysis documents a change

in the propagation pattern of contractionary shocks across states. Until the 1990s, reces-

sions were characterized by the spread of shocks mainly across a few big states in terms

of their share of GDP. Since that time, recessionary shocks have been more uniformly

spread across all states, suggesting that regions of the U.S. economy have become more

interdependent over the past two decades.

The paper is structured as follows. Section 2 presents the proposed time-varying

synchronization approach, describes the filtering algorithm and reports the Monte Carlo

simulation results. Section 3 analyzes the dynamic synchronization of business cycle phases

in U.S. states, relying on bivariate, multivariate and network analyses. Finally, Section 4

concludes.

2 The Model

Let yi,t be the growth rate of an economic activity index of economy i, which can be

modelled as a function of a latent or unobserved state variable (Si,t) that indicates whether

the economy is in a recessionary or expansionary regime, an idiosyncratic component, εi,t,

and a set of additional parameters, θi. Accordingly, for i = a, b,

ya,t = f(Sa,t, εa,t, θa) (1)

yb,t = f(Sb,t, εb,t, θb). (2)

The goal of this section is to provide assessments on the synchronization between Sa,t and

Sb,t for each period of time; that is,

sync(Sa,t, Sb,t) = Pr(Sa,t = Sb,t), for t = 1, ..., T. (3)
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Following Owyang et al. (2005) and Hamilton and Owyang (2012), who rely on AR(0)

MS specification, the following tractable bivariate two-state Markov-switching specification

is considered:[
ya,t

yb,t

]
=

[
µa,0 + µa,1Sa,t

µb,0 + µb,1Sb,t

]
+

[
εa,t

εb,t

]
,

[
εa,t

εb,t

]
∼ N

([
0

0

]
,

[
σ2
a σab

σab σ2
b

])
. (4)

It is worth noting that the results derived in this section can be straightforwardly

extended to specifications including lags in the dynamics. However, Camacho and Perez-

Quiros (2007) show that positive autocorrelation in macroeconomic time series can be

better captured by shifts between business cycle states rather than by the standard au-

toregressive coeffi cients. The model can also be extended to allow for regime switching

in the variance-covariance matrix; however, since the empirical application focuses on the

period after the Great Moderation, such a feature is not included in the model.

When Sk,t = 0, the state variable Sk,t indicates that ykt is in regime 0 with a mean

equal to µk,0. When Sk,t = 1, ykt is in regime 1 with a mean equal to µk,0 + µk,1, for

k = a, b. Moreover, Sa,t and Sb,t evolve according to irreducible two-state Markov chains,

whose transition probabilities are given by

Pr(Sk,t = j|Sk,t−1 = i) = pk,ij , for i, j = 0, 1 and k = a, b. (5)

To characterize the dynamics of yt = [ya,t, yb,t]
′, the information contained in Sa,t

and Sb,t can be summarized in the state variable, Sab,t, which accounts for the possible

combinations that the vector µSab,t =
[
µa,0 + µa,1Sa,t, µb,0 + µb,1Sb,t

]′ could take through
the different regimes:

Sab,t =


1, if Sa,t = 0, Sb,t = 0

2, if Sa,t = 0, Sb,t = 1

3, if Sa,t = 1, Sb,t = 0

4, if Sa,t = 1, Sb,t = 1

. (6)

Similar to Harding and Pagan (2006), the objective of the proposed model is to dif-

ferentiate regimes where the phases of ya,t and yb,t are unsynchronized, implying that Sa,t

and Sb,t follow independent dynamics; that is,

Pr(Sa,t = ja, Sb,t = jb) = Pr(Sa,t = ja) Pr(Sb,t = jb), (7)

from regimes where the phases of ya,t and yb,t are fully synchronized, entering expansions

and recessions synchronously, implying that Sa,t = Sb,t = St; that is,

Pr(Sa,t = ja, Sb,t = jb) = Pr(St = j). (8)
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In order to do so, I introduce into the framework another latent variable, Vt, that takes

the value of 1 if business cycle phases are in a synchronized regime, and the value of 0 if

they are under an unsynchronized regime at time t; that is,

Vt =

{
0 if Sa,t and Sb,t are unsynchronized

1 if Sa,t and Sb,t are synchronized
. (9)

The latent variable Vt also evolves according to an irreducible two-state Markov chain

whose transition probabilities are given by

Pr(Vt = jv|Vt−1 = iv) = pv,kl, for iv, jv = 0, 1. (10)

The advantage of introducing Vt, rather than analyzing the general Markovian specifi-

cation with the full transition probability matrix, as in Sims et al. (2008), is that all

the information about the dependency relationship between the latent variables remains

summarized in a single variable, Vt, providing an easy-to-interpret way of assessing syn-

chronization changes. It is also able to provide information about the expected duration

of regimes where economies are synchronized or unsynchronized based on their associated

transition probabilities. Notice that the analysis in this paper focuses on dependency, not

on correlations, since the objective is to determine if two economies are either synchronized

or unsynchronized.

Accordingly, there is an enlargement of the set of regimes in Equation (6), which

remains fully characterized by the latent variable S∗ab,t, that simultaneously collects infor-

mation regarding joint dynamics, individual dynamics and their dependency relationship

over time:

S∗ab,t =



1, if Sa,t = 0, Sb,t = 0, Vt = 0

2, if Sa,t = 0, Sb,t = 1, Vt = 0

3, if Sa,t = 1, Sb,t = 0, Vt = 0

4, if Sa,t = 1, Sb,t = 1, Vt = 0

5, if Sa,t = 0, Sb,t = 0, Vt = 1

6, if Sa,t = 0, Sb,t = 1, Vt = 1

7, if Sa,t = 1, Sb,t = 0, Vt = 1

8, if Sa,t = 1, Sb,t = 1, Vt = 1

. (11)

Inferences on the latent variable S∗ab,t, can be computed by conditioning on Vt
3:

Pr(S∗ab,t = j∗ab) = Pr(Sa,t = ja, Sb,t = jb, Vt = jv)

= Pr(Sa,t = ja, Sb,t = jb|Vt = jv) Pr(Vt = jv), (12)

3Notice that states 6 and 7 in Equation (11) are truncated to zero by construction, since the two state
variables cannot be in different states if they are perfectly synchronized, i.e., Pr(Sa,t = ja, Sb,t = jb|Vt =
1) = 0 for any ja 6= jb.
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where Pr(Sa,t = ja, Sb,t = jb|Vt = jv) indicates the inferences on the dynamics of Sab,t,

conditional on total independence if Vt = 0, or conditional on full dependence if Vt = 1.

In the former case, the joint probability of S∗ab,t is given by

Pr(Sa,t = ja, Sb,t = jb, Vt = 0) = Pr(Sa,t = ja, Sb,t = jb|Vt = 0) Pr(Vt = 0)

= Pr(Sa,t = ja) Pr(Sb,t = jb) Pr(Vt = 0), (13)

while, in the latter case, it is given by

Pr(Sa,t = ja, Sb,t = jb, Vt = 1) = Pr(Sa,t = ja, Sb,t = jb|Vt = 1) Pr(Vt = 1)

= Pr(St = j) Pr(Vt = 1). (14)

Therefore, inferences on the state variable Sab,t, in Equation (6), after accounting for

synchronization, can be easily recovered by integrating Pr(Sa,t = ja, Sb,t = jb, Vt = jv)

through Vt; that is,

Pr(Sa,t = ja, Sb,t = jb) = Pr(Vt = 1) Pr(St = j) +

(1− Pr(Vt = 1)) Pr(Sa,t = ja) Pr(Sb,t = jb), (15)

which implies that the joint dynamics of Sa,t and Sb,t remain characterized by a weighted

average between the extreme dependent and independent cases, where the weights assigned

to each of them are endogenously determined by

Pr(Vt = 1) = δabt . (16)

Therefore, from now on, the term δabt will be referred to as the dynamic synchronicity

between Sa,t and Sb,t.

2.1 Filtering Algorithm

This section develops an extension of the Hamilton (1994) algorithm to estimate the model

described in Equations (4) and (15). The algorithm is composed of two unified steps. In

the first one, the goal is the computation of the likelihoods, while in the second, the goal

is the prediction and updating of probabilities.

STEP 1: The parameters of the model are assumed to be known for the moment and

are collected in the vector

θ = (µa,0, µa,1, µb,0, µb,1, σ
2
a, σ

2
b , σab, pa,00, pa,11, pb,00, pb,11, p00, p11, pv,00, pv,11)′. (17)

The conditional joint density corresponding to the state variable that fully characterizes
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the model’s dynamics, S∗ab,t, can be expressed as a function of its components,

f(yt, S
∗
ab,t = j∗ab|ψt−1; θ) = f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ), (18)

which is the product of the density, conditional on the realization of the set of regimes

times the probability of occurrence of such realizations,

f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ) = f(yt|Sa,t = ja, Sb,t = jb, Vt = jv, ψt−1; θ)×

Pr(Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ). (19)

The trivariate probability of Sa,t = ja, Sb,t = jb and Vt = jv is obtained by using condi-

tional probabilities,

Pr(Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ) = Pr(Sa,t = ja, Sb,t = jb|Vt = jv, ψt−1; θ)×

Pr(Vt = jv|ψt−1; θ), (20)

where the term Pr(Sa,t = ja, Sb,t = jb|Vt = jv, ψt−1; θ) is fully characterized with the

results derived in Equations (13) and (14). Thus, Equation (20) remains a function of

only Pr(Sk,t = jk|ψt−1; θ) for k = a, b, Pr(Vt = jv|ψt−1; θ) and Pr(St = j|ψt−1; θ). The

steady state or ergodic probabilities can be used as starting values to initialize the filter.

In order to make inferences on the evolution of single-state variables, the marginal

densities are obtained as

f(yt, Sa,t = ja|ψt−1; θ) =
1∑

jb=0

1∑
jv=0

f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ), (21)

f(yt, Sb,t = jb|ψt−1; θ) =

1∑
ja=0

1∑
jv=0

f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ), (22)

f(yt, Vt = jv|ψt−1; θ) =
1∑

ja=0

1∑
jb=0

f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ). (23)

The marginal density associated the state variable St requires a special treatment. When

it is assumed that the model’s dynamics are governed by only one state variable, i.e.,

Sa,t = Sb,t = St, the density in Equation (18) collapses to f †(yt, St = j|ψt−1; θ), where

f †(yt, St = 0|ψt−1; θ) = f(yt, Sa,t = 0, Sb,t = 0, Vt = 1|ψt−1; θ), (24)

f †(yt, St = 1|ψt−1; θ) = f(yt, Sa,t = 1, Sb,t = 1, Vt = 1|ψt−1; θ). (25)
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Accordingly, the density of yt, conditional on the past observables, is given by

f(yt|ψt−1; θ) =
1∑

ja=0

1∑
jb=0

1∑
jv=0

f(yt, Sa,t = ja, Sb,t = jb, Vt = jv|ψt−1; θ), (26)

and under the assumption that Sa,t = Sb,t = St, it is given by

f †(yt|ψt−1; θ) =
1∑
j=0

f †(yt, St = j|ψt−1; θ). (27)

STEP 2: Once yt is observed at the end of time t, the prediction probabilities Pr(Sk,t =

jk|ψt−1; θ) for k = a, b, Pr(Vt = jv|ψt−1; θ) and Pr(St = j|ψt−1; θ) can be updated:

Pr(Sa,t = ja|ψt; θ) =
f(yt, Sa,t = ja|ψt−1; θ)

f(yt|ψt−1; θ)
(28)

Pr(Sb,t = jb|ψt; θ) =
f(yt, Sb,t = jb|ψt−1; θ)

f(yt|ψt−1; θ)
(29)

Pr(Vt = l|ψt; θ) =
f(yt, Vt = l|ψt−1; θ)

f(yt|ψt−1; θ)
(30)

Pr(St = j|ψt; θ) =
f †(yt, St = j|ψt−1; θ)

f †(yt|ψt−1; θ)
(31)

Forecasts of the updated probabilities in Equations (28) to (31) are done by using the

corresponding transition probabilities pa,ij , pb,ij , pij , pv,ij , in the vector θ, for Sa,t, Sb,t, St

and Vt, respectively:

Pr(Sk,t+1 = jk|ψt; θ) =

1∑
ik=0

Pr(Sk,t+1 = jk, Sk,t = ik|ψt; θ)

=
1∑

ik=0

Pr(Sk,t+1 = jk|Sk,t = ik) Pr(Sk,t = ik|ψt; θ), for k = a, b (32)

Pr(Vt+1 = jv|ψt; θ) =
1∑
i=0

Pr(Vt+1 = jv, Vt = iv|ψt; θ)

=

1∑
i=0

Pr(Vt+1 = jv|Vt = iv) Pr(Vt = iv|ψt; θ) (33)

Pr(St+1 = j|ψt; θ) =

1∑
i=0

Pr(St+1 = j, St = i|ψt; θ)

=
1∑
i=0

Pr(St+1 = j|St = i) Pr(St = i|ψt; θ) (34)

Finally, the above forecasted probabilities are used to predict inferences on the real-
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izations of S∗ab,t+1, relying on Equation (20):

Pr(Sa,t+1 = ja, Sb,t+1 = jb, Vt+1 = jv|ψt; θ) = Pr(Sa,t+1 = ja, Sb,t+1 = jb|Vt+1 = jv, ψt; θ)×

Pr(Vt+1 = jv|ψt; θ), (35)

where Equation (35) remains a function of Pr(Sk,t+1 = jk|ψt; θ) for k = a, b, Pr(Vt+1 =

jv|ψt; θ) and Pr(St+1 = j|ψt; θ).
By iterating these two steps for t = 1, 2, . . . , T , the algorithm provides simultaneous

inferences on Sa,t, Sb,t and their dynamic synchronicity δabt , defined in Equation (16).

Regarding the estimation of the parameters, notice that, as the number of possible

states increases, the likelihood function could be characterized by several local maximums,

causing strong convergence problems in performing maximum likelihood estimations, as

shown in Boldin (1996). Hence, given the high number of combinations of states through

which the likelihood is conditioned in Equation (26), the set of parameters θ along with

the inferences on the state variables are estimated by using Bayesian methods. Specif-

ically, a multivariate version of the approach in Kim and Nelson (1999), which applies

Gibbs sampling procedures, is used. The estimation method is explained in detail in the

Appendix.

2.2 Simulation Study

In order to validate the reliability of the proposed approach to assess changes in the

synchronization of business cycle phases, I rely on the use of Monte Carlo experiments.

Each simulation consists of two steps. First, the generation of two stochastic processes

subject to regime switching that experience one or more synchronization changes. Second,

by letting the econometrician observe only the generated data, but not the data-generating

process, the proposed filter in Section 2.1 along with the Gibbs sampler, are applied to

obtain estimates of the model’s parameters, probabilities of recession for each economy,

and, more importantly, the inferences on synchronization changes. I then address how

well the parameter estimates and inferences match the real ones.4

Given a sample of size T , the data-generating process consists of generating a first-order

Markovian process, Sa,t, with a transition probability matrix,

P ∗a =

(
p∗a,00 1− p∗a,11

1− p∗a,00 p∗a,11

)
, (36)

and an error term, eIa,t, drawn from an N(0, 1). Then, given a vector of means [µ∗a,0, µ
∗
a,1]′

4 It is important to note that the filter’s performance is assessed by simulations, under the assumption
that the model is correctly specified. An interesting extension in this line of research could be assessing
such performance by relaxing this assumption.
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and standard error σ∗a, I generate a process y
I
a,t as follows:

yIa,t = µ∗a,0 + µ∗a,1Sa,t + σ∗ae
I
a,t, (37)

and given a vector of means [µ∗b,0, µ
∗
b,1]′, standard error σ∗b and transition probabilities p

∗
b,00

and p∗b,11, the same procedure is repeated to independently generate

yIb,t = µ∗b,0 + µ∗b,1Sb,t + σ∗be
I
b,t, (38)

where Sb,t is a first-order Markovian process and eIb,t is drawn from an N(0, 1). Next,

another Markovian process, St, is generated by using the transition matrix

P ∗ab =

(
p∗00 1− p∗11

1− p∗00 p∗11

)
, (39)

and an error-term vector [eDa,t, e
D
b,t]
′ is drawn from a bivariate normal distribution. Then,

given the two vectors of means [µ∗a,0, µ
∗
a,1]′ , [µ∗b,0, µ

∗
b,1]′, standard errors σ∗a, σ

∗
b , and a

parameter σ∗ab, I generate[
yDa,t

yDb,t

]
=

[
µ∗a,0 + µ∗a,1St

µ∗b,0 + µ∗b,1St

]
+

[
σ∗a σ∗ab

σ∗ab σ∗b

][
eDa,t

eDb,t

]
. (40)

The information generated so far can be collected in two vectors, one in which two

stochastic processes are driven by two Markov-switching variables independent from each

other, yIt = [yIa,t, y
I
b,t]
′, and the other where two stochastic processes are governed by only

one Markov-switching dynamic, yDt = [yDa,t, y
D
b,t]
′.

The premise of this paper is that, during some regimes, the output growth of two

economies can follow dynamics similar to those in yDt , while during other regimes, things

can change in one, or both, of the economies, leading their joint dynamics to behave in

the same way as those in yIt , following independent patterns. To mimic this situation, I

start analyzing the simplest case in which there is just one synchronization change in a

sample of size T , occurring at time τ , with 1 < τ < T .5 Then, I let yt = [ya,t, yb,t]
′ be

the observed output growth of two economies, which comes from the following unobserved

data-generating process:

yt =

{
yDt , for t = 1, . . . , τ

yIt , for t = τ + 1, . . . , T
, (41)

5The selection of τ is based on a random draw u, generated from a uniform distribution U [0, 1], i.e.,
τ̂ = uT , then τ̂ is rounded to the nearest integer number to obtain τ . Also, the use of draws of τ equal to
the boundaries, i.e., 1 or T , is avoided.
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which can be alternatively expressed as

yt = yDt Vt + (1− Vt)yIt , (42)

where Vt is an indicator variable of synchronization, whose dynamics are described by

{Vt}T1 =

[
1τ

0T−τ

]
, (43)

with 1τ being a vector, with entries equal to one, of size τ , and 0T−τ a zero vector of size

T −τ . The case of one synchronization change can be easily extended to mimic the case of
Z synchronization changes, occurred at τ1, τ2, . . . , τZ , with 1 < τ1 < τ2 < . . . < τZ < T ,

just by appropriately modifying the dynamics in {Vt}T1 .
Since the data-generating process and parameters are unknown by the econometri-

cian, the Gibbs sampler is used to estimate the model’s parameters, the probabilities of

recession for each economy and, more importantly, inferences on the dynamics of Vt, by

relying on the filtering algorithm proposed in Section 2.1. The criterion used to assess the

performance of the regime inferences and the synchronization is the Quadratic Probability

Score (QPS), defined as

QPS(Ξ) =
1

T

T∑
t=1

(Ξ− Pr(Ξ = 1|ψT ))2, for Ξ = Sa,t, Sb,t, Vt. (44)

To illustrate the filtering and estimation strategy’s performance, Figure 1 plots one

simulation for the cases in which there is one, two and three synchronization changes in a

sample of 200 periods, i.e., for z = 1, 2, 3, with T = 200. For each case, the top charts plot

the two observed time series, ya,t and yb,t, generated with the parameter values in Table 1

and by using Equation (42), along with the unobserved dynamics of Vt. Both time series

show strong coherence in phases when Vt = 1, and the opposite occurs when Vt = 0. The

two middle charts plot the probabilities of recession associated with each time series, i.e.,

Pr(Sk,t = 0|ψT ), for k = a, b, showing values near to one when the corresponding time

series reports consecutive negative values; the dynamics of Vt is also plotted as reference.

Finally, the bottom charts plot the computed inferences on the synchronization changes,

i.e., Pr(Vt = 1), along with the true dynamics of Vt, showing their close relation in all three

cases and providing insight into the satisfactory performance of the proposed framework

for assessing synchronization changes.

This experiment is replicated M = 1, 000 times for Z = 6 different cases. Each case

corresponds to z changes in synchronization, for z = 1, 2, 3, 4, 5, and the last case considers

a random number of synchronization changes, i.e., unlike predefining the dynamics of Vt as

in Equation (43), it is modelled as a first-order Markov chain with transition probabilities
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p∗V,00 and p
∗
V,11, i.e. z = f(Vt).6

The result of the Monte Carlo simulations are reported in Table 2, showing the average

over the M replications of each estimated parameter

θ∗z =
1

M

M∑
m=1

θ∗(m)
z , (45)

where θ∗(m)
z corresponds to the vector of parameters, as defined in Equation (17), associ-

ated to the mth replica and the zth case. All parameter estimates appear to be unbiased

for the different values of z. However, two features deserve attention. First, the stochastic

process with the highest difference of the within-regime means, in this case yb,t, shows

more accurate estimates, meaning that higher differences provide a better identification of

the phases of the business cycles.7 Second, the accuracy in the estimation of the transi-

tion probabilities decreases when z = f(Vt), owing to the high number of synchronization

changes and the short duration of each change generated by letting Vt follow Markovian

dynamics.

Regarding the performance of the regime inferences, Table 3 reports the averages over

theM replications with the QPS associated with the state variables Sa,t, Sb,t and Vt, which

can be interpreted as the average over the M replications of the squared deviation from

the generated business cycles:

QPS(Ξ)z =
1

M

M∑
m=1

QPS(Ξ)(m)
z , for Ξ = Sa,t, Sb,t, Vt, (46)

where QPS(Ξ)
(m)
z , as defined in Equation (44), corresponds to the mth replica and the

zth case. The results indicate that, although inferences on the state variables in general

present high precision, the ones associated with the time series with the highest difference

of the within-regime means, yb,t, are the most accurate. The main message of the table is

that the precision of the inferences decreases as the number of synchronization changes,

k, increases. This feature can also be observed by looking at the histograms of the M

replications plotted in Figure 2, in particular, the ones associated with QPS(Vt). However,

it is natural to think of synchronization changes as events that do not occur as often as

the business cycle phases of an economy. They may require longer periods of time to take

place, since they originate from changes in the structural relationships among economies.

This suggests that the proposed model is suitable for accurately inferring synchronization

changes of business cycle phases.

6This is done using the corresponding values given in Table 1.
7The parameters associated with the variance-covariance matrix of yt are not analyzed in Table 2

because the variance-covariance matrix changes through the regimes of dependence and are therefore not
comparable with the estimated ones.
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3 Monitoring U.S. States Business Cycles Synchronization

The most recent global financial crisis has stimulated interest in the study of the sources

and propagation of contractionary episodes, calling for a more careful look at the dis-

aggregation of business cycles in order to assess the mechanisms underlying economic

fluctuations.

On the one hand, recent work by Acemoglu et al. (2012), which relies on network

analysis, finds that sectoral interconnections capture the possibility of “cascade effects,”

whereby productivity shocks to a sector propagate not only to its immediate downstream

customers, but also to the rest of the economy.

On the other hand, two recent papers have shown interesting features of economic

activity synchronization when the business cycle is disaggregated at the regional level. In

the first, Owyang et al. (2005) investigate the evolution of the individual business cycle

phases of U.S. states. By following a univariate approach, the authors find that U.S. states

differ significantly in the timing of switches between expansions and recessions, and also

differ in the extent to which phases in state business cycles are synchronous with those of

the national economy. In the second paper, Hamilton and Owyang (2012) use a unified

framework to go through the propagation of regional recessions in the United States, using

a multivariate approach that focuses on clustering the states that share similar business

cycle characteristics. They find that differences across states appear to be a matter of

timing and that they can be grouped into three clusters, with some entering recession or

recovering before others. Although these previous studies provide useful insights about

the overall synchronization pattern in a given sample period, they are not able to detect

changes in patterns occurring in these time spans.

This study intends to unify both concepts: first, the dynamic synchronization of pair-

wise cycles, by using the framework proposed in Section 2; and second, the dynamic

interdependence among all U.S. states, by relying on network analysis, in order to assess

the presence and the nature of potential changes in the regional propagation of contrac-

tionary shocks. For this purpose, I use data on U.S. states coincident indexes, proposed

in Crone and Matthews(2005) and provided by the Federal Reserve Bank of Philadelphia,

as monthly indicators of the overall economic activity at the state level for the time span

August 1979 to March 2013 (Alaska and Hawaii are excluded as in Hamilton and Owyang

(2012)). The Chicago Fed National Activity Index (CFNAI) is used as a monthly measure

of the U.S. national business cycle. All these indexes of real economic activity, for each

state and for the entire United States, have been constructed based on the principle of

co-movement among industrial production, employment, sales and income measures.
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3.1 Bivariate Analysis

The analysis for 48 states plus the United States as a whole requires the modelling of the

C49
2 = 1, 176 pairwise comparisons. To assess the performance of the proposed Markov-

switching synchronization model, two selected examples are analyzed in detail.8 The first

example focuses on the case of two states that have a high share of national GDP: New

York (7.68%) and Texas (7.95%). Table 4 reports the Bayesian estimates for the New York

vs. Texas model, showing negative growth rates when St = 0 and positive growth when

St = 1, for both states. It is worth highlighting the estimates of the transition probabilities

associated with the state variable that measures synchronization, Vt. The probability

of remaining in a regime of high synchronization is almost equal to the probability of

remaining in a low synchronization regime, about 0.96. This result is corroborated in

Chart A of Figure 3, which plots the probabilities of recession for New York and Texas

along with the corresponding time-varying synchronization, δNY,TXt , as defined in Equation

(16). As can be seen in the top and middle charts, from the 1980s to the mid-1990s, these

states experienced recessions at different times. This is reflected in the low values of

the synchronicity, plotted at the bottom of Chart A. However, since the mid-1990s, both

economies have been experiencing the same recession chronology, which is consistent with

the increase in the synchronicity observed after the mid-1990s.

The second example analyzes the case of two states with different shares of GDP:

the state with the highest, California (13.34%); and the state with the lowest, Vermont

(0.18%). Table 5 presents the Bayesian parameter estimates of the model. Unlike the

previous example, in the California vs. Vermont model, the probability of remaining in

a high synchronization regime, 0.97, is higher than the probability of remaining in a low

synchronization regime, 0.93. This is also illustrated in Chart B of Figure 3, which shows

that, in general, both states have experienced the same business cycle chronology, entering

recessions and expansions synchronously, with the exception of one period. Specifically, in

1989, Vermont entered a recessionary phase, while California was still growing until mid-

1990, when it too started to experience a recession. However, at the beginning of 1992,

Vermont started an expansionary phase, while California remained in recession until 1994.

These desynchronicities are reflected in the downturn of the dynamic synchronization,

δCA,V Tt , during that period, shown in the bottom panel of Chart B.

Considerable heterogeneity was found in the dynamics of the estimated time-varying

synchronizations, finding cases involving significant changes, and cases where the synchro-

nization was almost constant, at low or high levels. Although the proposed framework

can provide information on the synchronization between any pair of states for any given

period of time, other ways to summarize the information are needed, since policy-makers

are interested in the "big picture" of the overall regional synchronization path.

8The results for the other 1,174 cases are available from the author upon request.
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3.2 Multivariate Analysis

As suggested by Tim (2002) and Camacho et al. (2006), the multi-dimensional scaling

(MDS) method is a helpful tool for identifying cyclical affi liations between economies, since

it seeks to find a low-dimensional coordinate system to represent n-dimensional objects

and create a map of lower dimension (k). Traditionally, studies use as input for this

method a symmetric matrix, Γ, that summarizes the cyclical distances between economies

for a given time span. Each entry γij of the matrix assigns a value characterizing the

distance between economies i and j. The output of the MDS consists of one map showing

the general picture for all the cyclical affi liations.

The dynamic synchronization measures obtained in the bivariate analysis, 0 ≤ δijt ≤ 1,

can be easily converted into desynchronization measures, γijt = 1−δijt . Accordingly, γ
ij
t can

be interpreted as cyclical distances, allowing the construction of the dissimilarity matrix

Γ, for each time period:

Γt =



1 γ12
t γ13

t . . . γ1n
t

γ21
t 1 γ23

t . . . γ2n
t

γ31
t γ32

t 1 . . . γ3n
t

...
...

...
. . .

...

γn1
t γn2

t γn3
t . . . 1


, (47)

which provides the possibility of assessing changes in the general picture of all cyclical

affi liations of U.S. states.

In a recent work on MDS, Xu et al. (2012) propose a way to deal with MDS in a

dynamic fashion, where the dimensional coordinates of the projection of any two objects,

i and j, are computed by minimizing the stress function,

min
γ̃ijt

=

n∑
i=1

n∑
j=1

(γijt − γ̃
ij
t )2

∑
i,i(γ

ij
t )2

+ β
n∑
i=1

γ̃it|t−1, (48)

where

γ̃ijt = (||zi,t − zj,t||2)1/2 (49)

γ̃it|t−1 = (||zi,t − zi,t−1||2)1/2, (50)

zi,t and zj,t are the k-dimensional projection of the objects i and j, and β is a temporal

regularization parameter that serves to zoom in or zoom out changes between frames at t

and at t+ 1, always keeping the same dynamics independent of its value. In principle, β

can be simply set up to 1; however, since the data in Γt belong to the unit interval, for a
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more adequate visual perception of the transitions between frames it is set up to 0.1. The

output of the minimization in Equation (48) provides a two-dimensional representation of

Γt.

The synchronization maps of U.S. states for the first month of the last four recessions

are plotted in the charts of Figure 4. Each point in the charts represents a state, and the

middle point refers to the United States as a whole. The closeness between two points

in the plane refers to their degree of synchronicity, i.e., the closer the points are, the

greater their synchronization. The figure corroborates the premise in the introduction of

this paper about the existence of significant changes in the grouping pattern among re-

gional economies over time. Specifically, the top-left chart plots the scenario for the 1981

recession, where a large number of states were synchronized with each other, while the

remaining states, such as Florida, Colorado, Texas, North Dakota, West Virginia, among

others, were following independent patterns. Also, notice that states such as Nevada,

North Carolina, Vermont and Tennessee, were the ones more in sync with the U.S. busi-

ness cycle during that month. The top-right corner presents the situation for the 1990

recession, showing a different grouping pattern, characterized by one large group of states

in sync with each other and two small clusters, the first one composed of New Hampshire,

Massachusetts, Connecticut, Vermont, New Jersey, Maine and Rhode Island, and the sec-

ond one composed of New York, Virginia, Delaware and Maryland. Notice that in this

month, states such as Florida, Pennsylvania and California, among others, were the ones

more in sync with the U.S. cycle. The bottom charts present the scenarios for the 2001

and 2007 recessions, in the left and right corner respectively. Again, the pattern changed

with respect to the previous episodes, since the last two recessions were characterized by a

core (composed of states highly in sync) and periphery (composed of independent states)

structure. Notice that the core during the 2001 recession is tighter than the core during the

2007 recession. The full animated representation can be found at the author’s webpage.9

An additional advantage of the proposed framework is the possibility of recovering the

stationary measures of synchronization, by using the ergodic probabilities associated with

the latent variable Vt. Chart A of Figure 5 plots the stationary grouping pattern, which

can be interpreted as the average pattern from August 1979 to March 2013. It shows

three groups of states: one is close to the U.S. cycle, the second is less but still close to the

U.S. cycle, while the third is characterized by the states following independent dynamics.

To assess whether this result reconciles with the one in Hamilton and Owyang (2012),

Chart B of Figure 5 plots the clusters obtained by those authors, clearly finding that both

results coincide, not only in the number of clusters but also in the states that correspond

to each cluster. Moreover, this result is not only robust to the methodology employed,

but also to the data used, since Hamilton and Owyang (2012) use annualized quarter-to-

9https://sites.google.com/site/daniloleivaleon/media
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quarter growth rates of payroll employment, while I use monthly growth rates of state

coincident indexes of economic activity. These facts show one of the main contributions of

the proposed framework, which is to provide synchronization measures that may change

over time, and that can be collapsed into ergodic measures that yield results consistent

with those in previous work.

Regarding the cyclical relationship between states and the national business cycle,

Table 6 reports the corresponding ergodic synchronizations, showing the range from the

highest, which is North Carolina with 0.91, to the lowest one, Oklahoma with 0.19, and

revealing that states with the highest GDP share do not necessarily represent the states

showing the highest synchronicity with the national business cycle. To provide a visual

perspective, Chart A of Figure 6 plots a U.S. map with the estimates obtained in this

paper, and Chart B plots the concordance pattern obtained in Owyang et al. (2005) by

calculating the percentage of the time two economies were in the same regime, based on

univariate MS models for each state. Although both results report high values in most of

the states located in the east region and medium values in a few states located in the west,

the stationary synchronization measure presents higher dispersion than the concordance,

as can be seen in the associated histograms. This comparison helps to disentangle in a

more precise way the cyclical relationship between the business cycles of states and the

nation.

3.3 Network Analysis

Recent works by Carvalho (2008), Gabaix (2011), Acemoglu et al. (2012), among others,

rely on network analysis to show how idiosyncratic shocks, at the firm or sectoral level, may

originate macroeconomic fluctuations, given their interlinkages. Although, such analysis

primarily relies on the economy’s sectoral disaggregation, it may be interesting to assess

if another type of disaggregation, e.g., regional, may also have significant implications on

aggregate fluctuations.

The intuition behind the synchronization measure in Equation (16) relies on the fact

that if δijt is close to 1, it is likely that at time t, economies i and j are sharing the same

business cycle phases, creating a link of interdependence between them. On the other

hand, if δijt is close to 0, it means that the economies are following independent phases

and thus are not linked.10 Therefore, by letting H = {hi}n1 be the set of n economies

taking the interpretation of nodes, hi for i = 1, . . . , n, and defining δijt as the probability

that nodes hi and hj are linked at time t, the matrix ∆t = 1n − Γt, can be interpreted

10Notice that the proposed synchronization modelling approach distinguishes between the state in which
two economies are in recession but their cycles are independent and just coincided, from the state where
the two economies are in recession because they are under a regime of dependence, i.e., states 1 and 5 of
S∗ab,t in Equation (11), respectively.
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as a weighted network of synchronization with Markovian dynamics.11 Consequently, the

cyclical interdependence of a large set of economies can be dynamically assessed under a

unified framework by relying on network analysis. It is worth noting that although the

construction of ∆t requires the computation of several bivariate models of the type in

Equation (4), it may be less restrictive and involve less parameter and regime uncertainty

than the computation of a framework with a similar non-linear nature but involving all n

economies simultaneously. However, further research in this respect is needed.

To provide a glimpse of the shape that the Markov-switching synchronization network

(MSYN) has taken during contractionary episodes, the charts of Figure 7 plot the cor-

responding network graph for the first month of the last four recessions. Given that the

MSYN is a weighted network, in order to make the graphical representation possible, a

link between nodes i and j is plotted if δijt > 0.5; otherwise, no link is plotted between

them. The figure corroborates the grouping pattern of one big cluster and independent

states in the 1981 recession, some small clusters in the 1990 recession and a core and

periphery structure in the 2001 and 2007 recessions, with a more concentrated core in the

most recent recession.12

The main advantage of providing a network analysis for the present framework is that

all the information on synchronicities in the current analysis can be summarized in just

one measure, the closeness centrality. There are several measures regarding the centrality

of a network, but given that desynchronization measures are interpreted as distances, the

most appropriate one for this context is the closeness centrality.

For robustness purposes, two variations of the closeness centrality are analyzed in this

section. For each of them, it is necessary to first compute the centrality of each node,

Ct(i) =
1∑

j 6=i|t dt(i, j)
, for i = 1, 2, ..., n, (51)

where d(i, j) is the length of the shortest path between nodes i and j, which can be

computed by the Dijkstra (1959) algorithm.13 Thus, the more central a node is, the lower

the total distance from it to all other nodes. Closeness can be regarded as a measure of

how fast it will take to spread information, e.g., risk, economic shocks, etc., from node i to

all other nodes sequentially. For an overview of definitions in network analysis, see Goyal

(2007).

Once the dynamic centrality of each node has been computed, the information about

11The term 1n represents a squared matrix of size n with all entries equal to 1.
12Notice that, although the U.S. business cycle is not included in the network analysis, only those of the

states, each chart in the figure shows a close relation with the corresponding one in Figure 4.
13For example, in a set H ′ = {a, b, c} where the distances γ = 1 − δ are given by γab = 0.5, γac = 0.9

and γbc = 0.2, the shortest path between a and c will be 0.7, since γab + γbc < γac. Thus, notice that
d(a, c) does not necessarily have to be equal to γac.
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the whole network’s centrality can be typically assessed as follows:

CNt =
k∑

i=1|t
[Ct(i

∗)− Ct(i)], (52)

where i∗ is the node that attains the highest closeness centrality across all nodes at time t.

The second measure, consists on the average across all nodes’centralities, Ct(i), defined

by

CAt =

k∑
i=1|t

Ct(i). (53)

These two measures, which provide information on the changes in the degree of aggregate

synchronization among the economies in the set H, for the present case between the states

of the United States, can be used to investigate the relationship between regional business

cycle interdependence and aggregate fluctuations.14

One of the main findings in Hamilton and Owyang (2012) is the substantial heterogene-

ity across regional recessions in the United States at the state level. How such heterogeneity

could change over time, however, is an issue that has remained uninvestigated. The pro-

posed framework is used to dynamically quantify the substantial regional heterogeneity

under the unified setting MSYN. The intuition behind the state’s centrality in Equation

(51) is the following: if, at time t, state i is highly synchronized with respect to the rest

of U.S. states, its total distance from them,
∑

j 6=i|t dt(i, j), would tend to be low and its

centrality, Ct(i), to be high. If a similar behaviour occurs with the remaining n− 1 states,

the MSYN’s centrality would also tend to take high values. This means that high global

interdependence, or, equivalently, high homogeneity of regional recessions, is associated

with high values of the MSYN’s centrality CΥ
t , for Υ = N,A.

Chart A of Figure 8 plots the network centrality, CNt , and the average centrality, C
A
t , in

standardized terms to facilitate their comparison. Both measures show similar dynamics,

experiencing substantial changes over time that have a close relation with the national

recessions dated by the NBER, and showing some interesting features. First, the centrality

shows a markedly high tendency to increase some months before national recessions take

place and to maintain high values during the whole contractionary episode, implying that

sudden increases in the degree of interdependence among states may be useful to signal

upcoming national recessions.

Second, once national recessions have ended, the centrality remains high for some

period of time. This is because the whole economy is recovering from the recession and

most of the states are synchronized, although, this time, in a recovery regime. Notice that

14A third measure was also computed by extracting the common component among the nodes’centralities
using principal component analysis. However, the results were similar to those of obtained with the average
centrality. Therefore, they are not shown.
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the highest interdependence level, occurring in October 2003, roughly coincided with the

highest growth rate of real GDP experienced by the U.S. economy from the end of 2000

until the present time.

Third, after this phase of recovery has ended and the U.S. economy starts its moderated

expansionary path, the centrality decreases until it reaches a certain stable level, which

prevails until another recession takes place and the cycle repeats. Notice that the periods

with higher heterogeneity across regional business cycles do not occur during recessions

or recoveries, but during periods of stable economic expansion. These three observations

reveal that regional economies in the United States at the state level are subject to cycles

of interdependence that are highly associated with the national business cycle.

Fourth, the centrality measures during the past two national recessions were almost

twice as high as during the previous recessions, corroborating the core-periphery structure

observed in the MDS analysis for the corresponding periods and plotted in the bottom

charts of Figure 7. This result discloses a change in the propagation pattern of aggre-

gate recessionary shocks. On the one hand, during the pre-2000 recessions, those shocks

were spread mainly toward a few large states, in terms of share of GDP, such as California,

Georgia, Massachusetts, New Jersey and New York during the 1981 recession, and Florida,

Georgia, North Carolina and Pennsylvania during the 1990 recession. On the other hand,

during the post-2000 recessions, such shocks were more uniformly and synchronously dis-

tributed across states, in particular, to the ones in the core that were the majority, as can

be seen in the charts of Figure 4. For robustness purposes, the centrality measures were

also computed using the filtered, instead of the smoothed, probabilities of Vt which are

plotted in Chart B of Figure 8. They show essentially the same results.

Finally, to address changes in the clustering pattern in a statistical rather than visual

manner, I compute the clustering coeffi cient of the MSYN for every time period by follow-

ing Strogatz and Watts (1998), which allows the measurement of the level of cohesiveness

between the business cycle phases of U.S. states. The dynamic clustering coeffi cient is

plotted in Figure 9, showing relatively low values during the 1981 and 1990 recessions and

high values during the 2001 and 2007 recessions. Moreover, it shows that in the mid-1990s

there was a significant change in the regional cohesiveness. Before that time, the cluster-

ing coeffi cient followed short cycles, but after the mid-1990s, it remained almost stable at

higher values, corroborating the change in the propagation of contractionary shocks that

occurred since the 2001 recession and providing evidence that the U.S. economy’s regions

have become more interdependent since the early 1990s.

There are several potential channels driving this change, such as macroeconomic or

financial factors. Further research on these issues is required.
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4 Conclusions

Most of the studies on business cycle synchronization provide a general pattern of cyclical

affi liations between economies for a given time span. However, little has been done to assess

potential pattern changes that may occur during such a time span. This paper proposed an

extended Markov-switching framework to assess changes in the synchronization of cycles by

inferring the time-varying dependency relationship between the latent variables governing

Markov-switching models. The reliability of the approach to track synchronization changes

is confirmed by Monte Carlo experiments.

The proposed framework is applied to investigate potential variations in the cyclical

interdependence between the states of the United States. There are three main findings.

First, the results report the existence of interdependence cycles that are associated with

NBER recessions. Such cycles are defined as periods characterized by low cyclical hetero-

geneity across states, experienced during the recessionary and recovery phases, followed

by longer periods of high cyclical heterogeneity that occur during the phases of stable

growth. Second, there are substantial variations in the grouping pattern of states over

time that can be monitored on a monthly basis, ranging from a scheme characterized by

several clusters of states to a core and periphery structure, composed of highly and lowly

synchronized states, respectively. Third, there is evidence of a change in the propagation

pattern of recessionary shocks across states. Up to the 1991 recession, recessionary shocks

were spread mainly toward a few large states, in terms of share of GDP. But after that,

contractionary shocks were more synchronously and uniformly spread toward most of the

U.S. states, implying that U.S. regions have become more interdependent since the early

1990s.
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Appendix

A Bayesian Parameter Estimation

The approach to estimate θ relies on a bivariate extended version of the multi-move Gibbs-

sampling procedure implemented by Kim and Nelson (1999) for Bayesian estimation of

univariate Markov-switching models. In this setting, both the parameters of the model

θ and the Markov-switching variables S̃k,T = {Sk,t}T1 for k = a, b, S̃T = {St}T1 and

ṼT = {Vt}T1 are treated as random variables given the data in ỹT = {yt}T1 . The purpose of
this Markov chain Monte Carlo simulation method is to approximate the joint and marginal

distributions of these random variables by sampling from conditional distributions.

A.1 Priors

For the mean and variance parameters in vector θ, the independent Normal-Wishart prior

distribution is used:

p(µ,Σ−1) = p(µ)p(Σ−1), (54)

where

µ ∼ N(µ, V µ)

Σ−1 ∼ W (S−1, υ),

and the associated hyperparameters are given by µ = (−1, 2 − 1, 2)′, V µ = I, S−1 = I,

υ = 0.

For the transition probabilities pa,00, pa,11, from Sa,t, pb,00, pb,11, from Sb,t, p00, p11, from

St; and pv,00, pv,11 from Vt, Beta distributions are used as conjugate priors:

pk,00 ∼ Be(uk,11, uk,10), pk,11 ∼ Be(uk,00, uk,01), for k = a, b (55)

pv,00 ∼ Be(uv,11, uv,10), pv,11 ∼ Be(uv,00, uv,01), (56)

p00 ∼ Be(u11, u10), p11 ∼ Be(u00, u01), (57)

where the hyperparameters are given by uι,01 = 2, uι,00 = 8, uι,10 = 1 and uι,11 = 9,

for ι = a, b, v,_. For each pairwise model, 6,000 iterations were performed, with the first

1,000 discarded.

A.2 Drawing S̃a,T ,S̃b,T ,S̃T and ṼT given θ and ỹT

Following the result in Equation (15), in order to make inferences on the bivariate dynamics

of the model in Equation (4) driven by S̃ab,T = {Sab,t}T1 and described in Equation (6),
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it is only necessary to make inferences on the dynamics of the single-state variables S̃a,T ,

S̃b,T , S̃T and ṼT . This can be done following the results in Kim and Nelson (1999) by first

computing draws from the conditional distributions:

g(S̃k,T |θ, ỹT ) = g(Sk,T |ỹT )

T∏
t=1

g(Sk,t|Sk,t+1, ỹt), for k = a, b (58)

g(S̃T |θ, ỹT ) = g(ST |ỹT )

T∏
t=1

g(St|St+1, ỹt) (59)

g(ṼT |θ, ỹT ) = g(VT |ỹT )
T∏
t=1

g(Vt|Vt+1, ỹt) (60)

In order to obtain the two terms in the right-hand side of Equations (58) and (59), the

following two steps can be employed:

Step 1: The first term can be obtained by running the filtering algorithm developed

in Section 2.1, to compute g(S̃k,t|ỹt) for k = a, b, g(S̃t|ỹt) and g(Ṽk,t|ỹt) for t = 1, 2, . . . , T ,

saving them and taking the elements for which t = T .

Step 2: The product in the second term can be obtained for t = T − 1, T − 2, . . . , 1,

by following the result:

g(St|ỹt, St+1) =
g(St, St+1|ỹt)
g(St+1|ỹt)

∝ g(St+1|St)g(St|ỹt), (61)

where g(St+1|St) corresponds to the transition probabilities of St and g(St|ỹt) that
were saved in Step 1.

Then, it is possible to compute

Pr[St = 1|St+1, ỹt] =
g(St+1|St = 1)g(St = 1|ỹt)∑1
j=0 g(St+1|St = j)g(St = j|ỹt)

, (62)

and generate a random number from a U [0, 1]. If that number is less than or equal to

Pr[St = 1|St+1, ỹt], then St = 1, otherwise St = 0. The same procedure applies for Sa,t,

Sb,t and Vt, and, by using Equation (15), inference of S̃ab,T can be done.

A.3 Drawing pa,00,pa,11,pb,00,pb,11, p00,p11,pv,00,pv,11 given S̃a,T ,S̃a,T ,S̃T and ṼT

Conditional on S̃k,T for k = a, b, S̃T and ṼT , the transition probabilities are independent

from the data set and the model’s parameters. Hence, focusing on the case of S̃T , the

likelihood function of p00, p11 is given by

L(p00, p11|S̃T ) = pn0000 (1− pn0100 )pn1111 (1− pn1011 ), (63)
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where nij refers to the transitions from state i to j, accounted for in S̃T .

Combining the prior distribution in Equation (57) with the likelihood, the posterior

distribution is given by

p(p00, p11|S̃T ) ∝ pu00+n00−1
00 (1− p00)u01+n01−1pu11+n11−1

11 (1− p11)u10+n10−1, (64)

which indicates that draws of the transition probabilities will be taken from

p00|S̃T ∼ Be(u00 + n00, u01 + n01), p11|S̃T ∼ Be(u11 + n11, u10 + n10). (65)

The same procedure applies for the cases of S̃k,T for k = a, b and ṼT .

A.4 Drawing µ0,a,µ1,a,µ0,b,µ1,b given σ2
a,σ

2
b,σab,S̃a,T ,S̃b,T ,S̃T ,ṼT and ỹT

The model in Equation (4) can be compactly expressed as

[
ya,t

yb,t

]
=

[
1

0

Sa,t

0

0

1

0

Sb,t

]
µa,0

µa,1

µb,0

µb,1

+

[
εa,t

εb,t

]
,

[
εa,t

εb,t

]
∼ N

([
0

0

]
,

[
σ2
a

σab

σab

σ2
b

])

yt = S̄tµ+ ξt, ξt ∼ N(0,Σ), (66)

stacking as

y =


y1

y2

...

yT

 , S̄ =


S̄1

S̄2

...

S̄T

 , and ξ =


ξ1

ξ2
...

ξT

 .

The model in Equation (66) remains written as a normal linear regression model with an

error covariance matrix of a particular form:

y = Sµ+ ξ, ξ ∼ N(0, I ⊗ Σ) (67)

Conditional on the covariance matrix parameters, state variables and the data, by

using the corresponding likelihood function, the conditional posterior distribution

p(µ|S̃a,T , S̃b,T , S̃T , ṼT ,Σ−1, ỹT ) takes the form

µ|S̃a,T , S̃b,T , S̃T , ṼT ,Σ−1, ỹT ∼ N(µ, V µ), (68)
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where

V µ =

(
V −1
µ +

T∑
t=1

S̄′tΣ
−1S̄t

)−1

µ = V µ

(
V −1
µ µ+

T∑
t=1

S̄′tΣ
−1yt

)
.

After drawing µ = (µa,0, µa,1, µb,0, µb,1)′ from the above multivariate distribution, if the

generated value of µa,1 or µb,1 is less than or equal to 0, that draw is discarded; otherwise,

it is saved, in order to ensure that µa,1 > 0 and µb,1 > 0.

A.5 Drawing σ2
a,σ

2
b,σab given µ0,a,µ1,a,µ0,b,µ1,b,S̃a,T ,S̃b,T ,S̃T ,ṼT and ỹT

Conditional on the mean parameters, state variables and the data, by using the corre-

sponding likelihood function, the conditional posterior distribution

p(Σ−1|S̃a,T , S̃b,T , S̃T , ṼT , µ, ỹT ),

takes the form

Σ−1|S̃a,T , S̃b,T , S̃T , ṼT , µ, ỹT ∼W (S
−1
, υ), (69)

where

υ = T + υ

S = S +
T∑
t=1

(
yt − S̄tµ

) (
yt − S̄tµ

)′
.

After Σ−1 is generated, the elements in Σ are recovered.
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Table 1: Parameter values for generating processes

Parameter Value Parameter Value
µ∗a,0 −1 µ∗b,0 −2

µ∗a,1 2 µ∗b,1 4

p∗a,11 0.9 p∗b,11 0.9

p∗a,00 0.8 pb,00 0.8

p∗11 0.9 p∗V,11 0.9

p∗00 0.8 p∗V,00 0.8

σ∗a 1 σ∗b 1
σ∗a,b 0.1

Note: The table shows the parameter values used to generate the stochastic processes yt
in Equation (42) for the simulation study in Section 2.2.

Table 2: Performance of parameter estimations

z = 1 z = 2 z = 3 z = 4 z = 5 z = f(Vt)

µ∗a,0 -0.95143 -0.93985 -0.94558 -0.93750 -0.93166 -0.93896
µ∗a,1 1.91921 1.89427 1.90213 1.89147 1.88822 1.89089
p∗a,11 0.89813 0.89689 0.89729 0.89606 0.89488 0.87803
p∗a,00 0.79663 0.79508 0.79393 0.78997 0.78900 0.75626
µ∗b,0 -1.98915 -1.99861 -1.99591 -1.99903 -1.99503 -1.99729
µ∗b,1 3.98711 3.99662 3.99139 3.99859 3.99011 3.99148
p∗b,11 0.89700 0.89576 0.89581 0.89341 0.89188 0.86977
pb,00 0.79166 0.79155 0.79088 0.78574 0.78600 0.74422
p∗11 0.89433 0.89241 0.89406 0.89026 0.88991 0.86936
p∗00 0.78479 0.78295 0.78600 0.77786 0.78900 0.74178
p∗V,11 – – – – – 0.89682
p∗V,00 – – – – – 0.80971

Note: The entries in the table report the average of the estimated parameter values through
the 1,000 replications for different numbers of synchronization changes, z.

Table 3: Performance of regime inferences

z = 1 z = 2 z = 3 z = 4 z = 5 z = f(Vt)

QPS(Sa,t) 0.05118 0.06448 0.05571 0.06470 0.06023 0.06074
QPS(Sb,t) 0.00749 0.00765 0.00763 0.00829 0.00805 0.00990
QPS(Vt) 0.06387 0.08554 0.09526 0.10988 0.11575 0.17769

Note: The entries in the table report the average of the Quadratic Probability Score
associated with the state variables through the 1,000 replications for different numbers of
synchronization changes, z.
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Table 4: Dynamic synchronization estimates between New York and Texas

Mean Std. Dev. Median
µny,0 -0.12945 0.01856 -0.12895
µny,1 0.36121 0.01844 0.36079
σ2
ny 0.02001 0.00153 0.01996

pny,11 0.98322 0.00744 0.98456
pny,00 0.93251 0.02667 0.93539
µtx,0 -0.20619 0.02203 -0.20614
µtx,1 0.56382 0.02258 0.56399
σ2
tx 0.02605 0.00187 0.02593

ptx,11 0.98503 0.00642 0.98598
ptx,00 0.93265 0.02687 0.93487
σny,tx 0.00819 0.00156 0.00820
p11 0.98113 0.00775 0.98240
p00 0.93069 0.02523 0.93472
pV,11 0.96516 0.03974 0.97721
pV,00 0.96206 0.02731 0.96879

Note: The selected example presents the case of two states with high and similar shares
of U.S. GDP, New York with 7.68% and Texas with 7.95%.

Table 5: Dynamic synchronization estimates between California and Vermont

Mean Std. Dev. Median
µny,0 -0.05433 0.01651 -0.05441
µny,1 0.38183 0.01736 0.38236
σ2
ny 0.02320 0.00180 0.02314

pny,11 0.97917 0.00855 0.98015
pny,00 0.94655 0.01969 0.94817
µtx,0 -0.12031 0.02875 -0.11942
µtx,1 0.44574 0.03106 0.44586
σ2
tx 0.05672 0.00447 0.05647

ptx,11 0.97762 0.00882 0.97884
ptx,00 0.94139 0.02105 0.94373
σny,tx 0.01574 0.00245 0.01561
p11 0.97829 0.00895 0.97956
p00 0.94627 0.02031 0.94897
pV,11 0.97412 0.02714 0.98243
pV,00 0.93864 0.03777 0.94518

Note: The selected example presents the case of the states with the highest and the lowest
shares of U.S. GDP, California with 13.34% and Vermont with 0.18%.

31



Table 6: Stationary synchronization between individual states and the entire United States

State Sync State Sync State Sync
Alabama 0.79 Maine 0.74 Ohio 0.84
Arizona 0.71 Maryland 0.52 Oklahoma 0.19
Arkansas 0.62 Massachusetts 0.56 Oregon 0.72
California 0.80 Michigan 0.85 Pennsylvania 0.79
Colorado 0.32 Minnesota 0.75 Rhode Island 0.65
Connecticut 0.79 Mississippi 0.75 S. Carolina 0.87
Delaware 0.77 Missouri 0.85 S. Dakota 0.54
Florida 0.70 Montana 0.34 Tennessee 0.84
Georgia 0.86 Nebraska 0.39 Texas 0.33
Idaho 0.57 Nevada 0.78 Utah 0.47
Illinois 0.75 N. Hampshire 0.44 Vermont 0.69
Indiana 0.83 New Jersey 0.77 Virginia 0.88
Iowa 0.59 New Mexico 0.49 Washington 0.69
Kansas 0.72 New York 0.72 Wisconsin 0.75
Kentucky 0.77 N. Carolina 0.91 W. Virginia 0.45
Louisiana 0.31 N. Dakota 0.24 Wyoming 0.25

Note: The table reports the stationary synchronization for the period August 1979 to
March 2013. These estimates correspond to the ergodic probability that the phases of the
state business cycles and U.S. business cycles are the same, i.e., Pr(Vt = 1). The index
used to measure the national business cycle is the Chicago Fed National Activity Index
(CFNAI).
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Figure 1: Simulation of changes in synchronization of cycles
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Note: The figure plots one simulation for the cases of 1, 2 and 3 changes in the synchronicity
of cycles. For each case, the top panels plot the generated pair of time series along with the
indicator variable of synchronization changes. The two middle panels plot the probabilities
of a low mean regime associated with each time series, along with the indicator variable as
reference. The bottom panels plot the estimated dynamics of the indicator variable along
with the real one.
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Figure 2: Histograms of the performance of regime inferences
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Note: The figure plots the histograms based on the 1,000 replications of the Quadratic
Probability Score associated with the state variables for different numbers of synchroniza-
tion changes, z.
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Figure 3: Dynamic synchronization between selected states

Chart A. New York and Texas Chart B. California and Vermont
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Note: The figure plots the output estimation for two selected pairwise models. Chart
A plots the probability of recession for New York and Texas along with their dynamic
synchronization. Chart B plots the probability of recession for California and Vermont
along with their dynamic synchronization. Shaded areas correspond to NBER recessions.
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Figure 4: Dynamic synchronization maps of U.S. states across recessions

Note: Each chart in the figure plots the dynamic multi-dimensional scaling map based
on the synchronization distance of the business cycle of U.S. states for different periods.
The distances are normalized with respect to the U.S. national economic activity, the grey
point in the centre. The size of the points refer to the GDP share of the correspond-
ing state. If two states are placed in the same orbit, they are equally in sync with the
United States. The full animated version of the synchronization mapping is available at
https://sites.google.com/site/daniloleivaleon/media.
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Figure 5: Grouping pattern based on business cycle phases

Chart A. Ergodic synchronization map of U.S. states

Chart B. Clustering pattern obtained in Hamilton and Owyang (2012)

Note: Chart A plots the multi-dimensional scaling map based on the stationary synchro-
nization distance of the business cycle characteristics of U.S. states for the sample August
1979 to March 2013. The distances are normalized with respect to the U.S. National Eco-
nomic Activity, the grey point in the centre. If two states are placed in the same orbit,
they are equally in sync with the United States. The ovals refer only to groups. The full
animated version can be found at the author’s web page. In Chart B, the shading for
each state indicates the probability that the state belongs to any given cluster. Source:
Hamilton and Owyang (2012)
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Figure 6: Synchronization between individual states and the entire U.S.

Chart A. Stationary synchronization
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Chart B. Concordance based on Owyang et al. (2005)
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Note: Chart A of the figure plots a thematic map of the United States based on the
stationary synchronization between each state and the national business cycle along with
the histogram corresponding to data in Table 6. A darker state represents a higher syn-
chronization. Chart B plots a thematic map of the United States using the concordances
obtained in Owyang et al. (2005) along with the corresponding histogram.
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Figure 7: Synchronization network of the U.S. states across recessions

Note: The figure plots the interconnectedness in terms of synchronization between the
business cycle phases of U.S. states. Each node represents a state and each line represents
the link between two states, which takes place only if Pr(V t = 1) > 0.5. The full animated
version can be found at https://sites.google.com/site/daniloleivaleon/media.
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Figure 8: Dynamic closeness centrality of the U.S. synchronization network

Chart A. Smoothed prob.-based centrality Chart B. Filtered prob.-based centrality

­2

­1

0

1

2

3

4

80 85 90 95 00 05 10

Network Cent. Average Cent.

­2

­1

0

1

2

3

4

5

80 85 90 95 00 05 10

Network Cent. Average Cent.

Note: Chart A of the figure plots the two measures of centrality of the Markov-switching
synchronization network based on the smoothed probabilities, Pr(Vt = 1|ψT ). The solid
line plots the network closeness centrality defined in Equation (52) and the dotted line
plots the average centrality, as defined in Equation (53). Chart B of the figure plots the
same measures as in Chart A, but based on the filtered probabilities, Pr(Vt = 1|ψt). All
the series in the figure are standardized to facilitate their comparison. Shaded bars refer
to the NBER recessions.

Figure 9: Dynamic clustering coeffi cient of the U.S. synchronization network

0.15

0.18

0.20

0.23

0.25

0.28

0.30

0.33

0.35

80 85 90 95 00 05 10

Note: The figure plots the time-varying clustering coeffi cient of the Markov-Switching
Synchronization Network for U.S. states. Shaded bars refer to the NBER recessions.
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